Математическая модель теплового дрейфа волоконно-оптического гироскопа…
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5
45
[2] Herve C. Lefevre. The fiber-optic gyroscope. Boston, Artech House, 2014. 343 p.
[3]
Sagnac G. L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interfé-
romètre en rotation uniforme.
Comptes rendus de l’Académie des Sciences
, 1913, vol. 95,
pp. 708–710.
[4]
Sagnac G. Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe
tournant.
Comptes rendus de l’Académie des Sciences
, 1913, vol. 95, pp. 1410–1413.
[5] Andronova I.A., Malykin G.B. Physical problems of fiber gyroscopy based on the Sagnac
effect.
Physics–Uspekhi
, 2002, vol. 45, no. 8, pp. 793–817.
DOI: 10.1070/PU2002v045n08ABEH001073
[6] Gromov D.S. Teplovaya zashchita i termostabilizatsiya volokonno-opticheskikh giros-
kopov. Dis. kand. tekhn. nauk [Thermal protection and thermal stabilization of fiber-optic
gyroscopes. Kand. tech. sci. diss.]. Saint-Petersburg, 2014. 134 p. (in Russ.).
[7] Antonova M.V., Matveev V.A. Model of error of a fiber-optic gyro exposed to thermal and
magnetic fields.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.
[Herald of the
Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 3, pp. 73–80 (in Russ.).
[8] Vakhrameev E.I., Galyagin K.S., Ivonin A.S., Oshivalov M.A. Prediction and correction of
fiber-optic gyroscope thermal drift.
Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie
[Journal of Instrument Engineering], 2013, vol. 56, no. 5, pp. 79–84 (in Russ.).
[9]
Shupe D.M. Thermally induced non-reciprocity in the fiber-optic interferometer.
Appl.
Opt
., 1980, vol. 19, no. 5, pp. 654–655. DOI: 10.1364/AO.19.000654
[10] Mohr F., Schadt F. Bias error in fiber optic gyroscopes due to elasto-optic interactions in
the sensor fiber.
Proc. SPIE
, 2004, vol. 5502, pp. 410–413. DOI: 10.1117/12.566654 Available at:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=848587[11]
Schadt F., Mohr F. Error signal formation in FOGs through thermal and elastooptical
environment influence on the sensing coil.
Proc.
Inertial Sensors and Systems
, 2011,
pp. 2.1–2.13.
[12]
Ling W., Li X., Xu Z., Zhang Z., Wei Y. Thermal effects of fiber sensing coils in different
winding pattern considering both thermal gradient and thermal stress.
Optics Communica-
tions
, 2015, vol. 356, pp. 290–295. DOI: 10.1016/j.optcom.2015.08.002
[13]
Ling W., Li X., Xu Z., Wei Y. A dicyclic method for suppressing the thermal-induced bias
drift of I-FOGs.
IEEE Photonics Technology Letters
, 2016, vol. 28, no. 3, pp. 272–275.
DOI: 10.1109/LPT.2015.2494623
[14]
Ling W., Li X., Yang H., Liu P., Xu Z., Wei Y. Reduction of the Shupe effect in interfero-
metric fiber optic gyroscopes: The double cylinder-wound coil.
Optics Communications
, 2016,
vol. 370, pp. 62–67. DOI: 10.1016/j.optcom.2016.02.064
[15]
Trufanov A.N., Smetannikov O.Y., Trufanov N.A. Numerical analysis of residual stresses
in preform of stress applying part for PANDA-type polarization maintaining optical fibers.
Opt. Fiber Technol
., 2010, vol. 16, no. 3, pp. 156–161. DOI: 10.1016/j.yofte.2010.02.001
[16] Hocker G.B. Fiber-optic sensing of pressure and temperature.
Appl. Opt
., 1979, vol. 18,
no. 9, pp. 1445–1448. DOI: 10.1364/AO.18.001445
[17] Kinet D., Mégret P., Goossen K.W., Qiu L., Heider D., Caucheteur C. Fiber Bragg grating
sensors toward structural health monitoring in composite materials: Challenges and solutions.
Sensors
, 2014, no. 14, pp. 7394–7419. DOI: 10.3390/s140407394