Previous Page  15 / 16 Next Page
Information
Show Menu
Previous Page 15 / 16 Next Page
Page Background

Математическая модель теплового дрейфа волоконно-оптического гироскопа…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5

45

[2] Herve C. Lefevre. The fiber-optic gyroscope. Boston, Artech House, 2014. 343 p.

[3]

Sagnac G. L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interfé-

romètre en rotation uniforme.

Comptes rendus de l’Académie des Sciences

, 1913, vol. 95,

pp. 708–710.

[4]

Sagnac G. Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe

tournant.

Comptes rendus de l’Académie des Sciences

, 1913, vol. 95, pp. 1410–1413.

[5] Andronova I.A., Malykin G.B. Physical problems of fiber gyroscopy based on the Sagnac

effect.

Physics–Uspekhi

, 2002, vol. 45, no. 8, pp. 793–817.

DOI: 10.1070/PU2002v045n08ABEH001073

[6] Gromov D.S. Teplovaya zashchita i termostabilizatsiya volokonno-opticheskikh giros-

kopov. Dis. kand. tekhn. nauk [Thermal protection and thermal stabilization of fiber-optic

gyroscopes. Kand. tech. sci. diss.]. Saint-Petersburg, 2014. 134 p. (in Russ.).

[7] Antonova M.V., Matveev V.A. Model of error of a fiber-optic gyro exposed to thermal and

magnetic fields.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.

[Herald of the

Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 3, pp. 73–80 (in Russ.).

[8] Vakhrameev E.I., Galyagin K.S., Ivonin A.S., Oshivalov M.A. Prediction and correction of

fiber-optic gyroscope thermal drift.

Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie

[Journal of Instrument Engineering], 2013, vol. 56, no. 5, pp. 79–84 (in Russ.).

[9]

Shupe D.M. Thermally induced non-reciprocity in the fiber-optic interferometer.

Appl.

Opt

., 1980, vol. 19, no. 5, pp. 654–655. DOI: 10.1364/AO.19.000654

[10] Mohr F., Schadt F. Bias error in fiber optic gyroscopes due to elasto-optic interactions in

the sensor fiber.

Proc. SPIE

, 2004, vol. 5502, pp. 410–413. DOI: 10.1117/12.566654 Available at:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=848587

[11]

Schadt F., Mohr F. Error signal formation in FOGs through thermal and elastooptical

environment influence on the sensing coil.

Proc.

Inertial Sensors and Systems

, 2011,

pp. 2.1–2.13.

[12]

Ling W., Li X., Xu Z., Zhang Z., Wei Y. Thermal effects of fiber sensing coils in different

winding pattern considering both thermal gradient and thermal stress.

Optics Communica-

tions

, 2015, vol. 356, pp. 290–295. DOI: 10.1016/j.optcom.2015.08.002

[13]

Ling W., Li X., Xu Z., Wei Y. A dicyclic method for suppressing the thermal-induced bias

drift of I-FOGs.

IEEE Photonics Technology Letters

, 2016, vol. 28, no. 3, pp. 272–275.

DOI: 10.1109/LPT.2015.2494623

[14]

Ling W., Li X., Yang H., Liu P., Xu Z., Wei Y. Reduction of the Shupe effect in interfero-

metric fiber optic gyroscopes: The double cylinder-wound coil.

Optics Communications

, 2016,

vol. 370, pp. 62–67. DOI: 10.1016/j.optcom.2016.02.064

[15]

Trufanov A.N., Smetannikov O.Y., Trufanov N.A. Numerical analysis of residual stresses

in preform of stress applying part for PANDA-type polarization maintaining optical fibers.

Opt. Fiber Technol

., 2010, vol. 16, no. 3, pp. 156–161. DOI: 10.1016/j.yofte.2010.02.001

[16] Hocker G.B. Fiber-optic sensing of pressure and temperature.

Appl. Opt

., 1979, vol. 18,

no. 9, pp. 1445–1448. DOI: 10.1364/AO.18.001445

[17] Kinet D., Mégret P., Goossen K.W., Qiu L., Heider D., Caucheteur C. Fiber Bragg grating

sensors toward structural health monitoring in composite materials: Challenges and solutions.

Sensors

, 2014, no. 14, pp. 7394–7419. DOI: 10.3390/s140407394