Н.П. Деменков, У Сяоган
50
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 5
[8] Song Z., Hofmann H., Li J., et al. A comparison study of different semi-active hybrid energy
storage system topologies for electric vehicles.
J. of Power Sources
, 2015, vol. 274, pp. 400–411.
[9] Song Z., Hofmann H., Li J., et al. Optimization
for a hybrid energy storage system in electric
vehicles using dynamic programming approach.
Applied Energy
, 2015, vol. 139, pp. 151–162.
[10] Hu X., Johannesson L., Murgovski N., et al. Longevity-conscious dimensioning and
power management of the hybrid energy storage system in a fuel cell hybrid electric bus.
Applied Energy
, 2015, vol. 137, pp. 913–924.
[11] Zhao C., Yin H., Yang Z., et al. Equivalent series resistance-based energy loss analysis
of a battery semiactive hybrid energy storage system
. IEEE Transactions on Energy Conversion
,
2015, vol. 30, pp. 1081–1091.
[12] Wang B., Xu J., Cao B., et al. A novel multimode hybrid energy storage system and its energy
management strategy for electric vehicles.
J. of Power Sources
, 2015, vol. 281, pp. 432–443.
[13] Santucci A., Sorniotti A., Lekakou C. Power split strategies for hybrid energy storage
systems for vehicular applications.
J. of Power Sources
, 2014, vol. 258, no. 14, pp. 395–407.
[14] Garcia F.S., Ferreira A.A., Pomilio J.A
.
Control strategy for battery-ultracapacitor hybrid
energy storage system[C].
Applied Power Electronics Conference and Exposition
, 2009. APEC
2009.
Twenty-Fourth Annual IEEE. IEEE
, pp. 826–832.
[15] Choi M., Lee J., Seo S. Real-time optimization for power management systems of a bat-
tery/supercapacitor hybrid energy storage system in electric vehicles.
IEEE Transactions on
Vehicular Technology
, 2014, vol. 63, no. 8, pp. 3600–3611.
[16] Zhang P., Yan F., Du C
.
A comprehensive analysis of energy management strategies for
hybrid electric vehicles based on bibliometric.
Renewable
&
Sustainable Energy Reviews
, 2015,
vol. 48, pp. 88–104.
[17] Murgovski N., Johannesson L., Sjöberg J., et al. Component sizing of a plug-in hybrid
electric powertrain via convex optimization.
Mechatronics
, 2012, vol. 22, no. 1, pp. 106–120.
[18] Boyd S., Vandenberghe L. Convex optimization. Cambridge, U.K., Cambridge Univ.
Press, 2004.
[19] Standard RF GOST 2.728–74 ESKD. Oboznacheniya uslovnye graficheskie v skhemakh.
Rezistory, kondensatory [State Standard 2.728–74 ESKD. Graphical symbols in diagrams.
Resistors, capacitors]. Moscow, Izd. standartov Publ., 2002. 12 p.
[20] Xiaogang Wu, Chen Hu, Jiuyu Du
.
Development of a driving cycle for city bus in Harbin
of China.
International Journal of Electric and Hybrid Vehicle
, 2015, vol. 7, no. 2, pp. 104–119.
Demenkov N.P.
— Cand. Sci. (Eng.), Assoc. Professor of Automatic Control Systems
Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow,
105005 Russian Federation).
Xiaogang Wu
— Ph. D., Professor, Head of the Department for Research, Faculty of Electrical
Engineering, Harbin University of Science and Technology (52 Xuefu Rd, Nangang, Harbin,
Heilongjiang, 150080 China).
Please cite this article in English as:
Demenkov N.P., Xiaogang Wu. Optimization of Energy Allocation in an Integrated Energy Storage
System for Electric Vehicles.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.
[Herald
of the BaumanMoscow State Tech. Univ., Instrum. Eng.], 2016, no. 5, pp. 36–50.
DOI: 10.18698/0236-3933-2016-5-36-50