Previous Page  18 / 19 Next Page
Information
Show Menu
Previous Page 18 / 19 Next Page
Page Background

Алгоритм навигации беспилотного летательного аппарата на основе улучшенного алгоритма…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 3

93

REFERENCES

[1] Cheeseman P., Smith R., Self M. A stochastic map for uncertain spatial relationships.

4th Int.

Symp. on Robotic Research

, 1987, pp. 467–474.

[2] Biswas J., Veloso M. Depth camera based indoor mobile robot localization and navigation.

IEEE

Int. Conf. on Robotics and Automation

, 2012, pp. 1697–1702. DOI: 10.1109/ICRA.2012.6224766

Available at:

http://ieeexplore.ieee.org/document/6224766

[3] Tu Y., Huang Z., Zhang X., et al. The mobile robot SLAM based on depth and visual sensing in

structured environment.

Robot Intelligence Technology and Applications 3

, 2015, pp. 343–357.

DOI: 10.1007/978-3-319-16841-8_32 Available at:

https://link.springer.com/chapter/10.1007/

978-3-319-16841-8_32

[4] Choi Y.W., Kim K.D., Choi J.W., Lee S.G. Laser image SLAM based on image matching for

navigation of a mobile robot.

Journal of the Korean Society for Precision Engineering

, 2013, vol. 30,

no. 2, pp. 177–184. DOI: 10.7736/KSPE.2013.30.2.177 Available at:

http://koreascience.or.kr/article/

ArticleFullRecord.jsp?cn=JMGHBV_2013_v30n2_177

[5]

Fabresse F.R., Caballero F., Maza I., Ollero A. Localization and mapping for aerial manipulation

based on range-only measurements and visual markers.

IEEE Int. Conf. on Robotics and Automa-

tion (ICRA)

, 2014, pp. 2100–2106. DOI: 10.1109/ICRA.2014.6907147

Available at:

http://ieeexplore.ieee.org/document/6907147

[6] Roh H.C., Sung C.H., Kang M.T., Chung M.J. Fast SLAM using polar scan matching and parti-

cle weight based occupancy grid map for mobile robot.

8th Int. Conf. on Ubiquitous Robots and

Ambient Intelligence (URAI)

, 2011, pp. 756–757. DOI: 10.1109/URAI.2011.6146004

Available at:

http://ieeexplore.ieee.org/document/6146004

[7] Qu L., He S., Qu Y. An SLAM algorithm based on improved UKF.

24th Chinese Control and

Decision Conf. (CCDC)

, 2012, pp. 4154–4157. DOI: 10.1109/CCDC.2012.6243112

Available at:

http://ieeexplore.ieee.org/document/6243112

[8] Chatterjee A., Ray O., Chatterjee A., Rakshit A. Development of a real-life EKF based SLAM

system for mobile robots employing vision sensing.

Expert Systems with Applications

, 2011, vol. 38,

no. 7, pp. 8266–8274. DOI: 10.1016/j.eswa.2011.01.007 Available at:

http://www.sciencedirect.com/

science/article/pii/S0957417411000273

[9]

Sola J., Vidal-Calleja T., Civera J., Montiel J.M.M. Impact of landmark parametrization on

monocular EKF–SLAM with points and lines.

Int. Journal of Computer Vision

, 2012, vol. 97, no. 3,

pp. 339–368. DOI: 10.1007/s11263-011-0492-5

Available at:

https://link.springer.com/article/10.1007/s11263-011-0492-5

[10]

Bailey T., Nieto J., Guivant J., Stevens M., Nebot E. Consistency of the EKF–SLAM algorithm.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

, 2006, pp. 3562–3568.

DOI: 10.1109/IROS.2006.281644 Available at:

http://ieeexplore.ieee.org/document/4058955

[11]

Ke Ke Geng. An improved EKF–SLAM algorithm for mobile robot.

Internauka,

2016, no. 2,

pp. 74–78.

[12]

Krig S. Computer vision metrics: Survey, taxonomy, and analysis. Apress, 2014.

[13]

Smith S.M., Brady J.M. SUSAN — a new approach to lowlevel image processing.

Int. Journal

of Computer Vision

, 1997, vol. 23, no. 1, pp. 45–78. DOI: 10.1023/A:1007963824710

Available at:

https://link.springer.com/article/10.1023%2FA%3A1007963824710

[14]

Geng Ke Ke, Chulin N.A. Environment reconstruction method with cloudy-point maps based

on real-time monocular computer vision.

Mezhdunarodnyy zhurnal eksperimental'nogo obra-

zovaniya

[International Journal of Experimental Education], 2015, no. 12-3, pp. 437–442.

Available at:

https://expeducation.ru/ru/article/view?id=9163