Previous Page  14 / 15 Next Page
Information
Show Menu
Previous Page 14 / 15 Next Page
Page Background

Численное моделирование процессов тепломассопереноса…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5

83

[17]

Rhoads D.S., Guan J.-L. Analysis of directional cell migration on defined FN gradients:

Role of intracellular signaling molecules.

Exp. Cell Res

., 2007, vol. 313, no. 18, pp. 3859–3867.

DOI: 10.1016/j.yexcr.2007.06.005

[18] Doyle P.S. Self-assembled magnetic matrices for DNA separation chips.

Science

, 2002,

vol. 295, no. 5563, pp. 2237–2237. DOI: 10.1126/science.1068420

[19]

Liu K.-K., Wu R.-G., Chuang Y.-J., Khoo H.S., Huang S.-H., Tseng F.-G. Microfluidic

systems for biosensing.

Sensors

, 2010, vol. 10, no. 7, pp. 6623–6661. DOI: 10.3390/s100706623

[20]

Iwanaga S., Smith N., Fujita K., Kawata S., Nakamura O. Single-pulse cell stimulation

with a near-infrared picosecond laser.

Appl. Phys. Lett

., 2005, vol. 87, no. 24, pp. 243901.

DOI: 10.1063/1.2147733

[21] Dittrich P.S., Manz A. Single-molecule fluorescence detection in microfluidic channels —

the Holy Grail in μTAS?

Anal. Bioanal. Chem

., 2005, vol. 382, iss. 8, pp. 1771–1782.

DOI: 10.1007/s00216-005-3335-9

[22] Mayer F., Salis G., Funk J., Paul O., Baltes H. Scaling of thermal CMOS gas flow

microsensors: Experiment and simulation.

Proc. of the IEEE Micro Electro Mechanical Systems

(MEMS)

, pp. 116–121. DOI: 10.1109/MEMSYS.1996.493839

[23] Komiya K., Higuchi F., Ohtani K. Characteristics of a thermal gas flowmeter.

Rev. Sci.

Instrum

., 1988, vol. 59, no. 3, pp. 477–479. DOI: 10.1063/1.1139864

[24]

Lammerink T.S.J., Tas N.R., Elwenspoek M., Fluitman J.H.J. Micro-liquid flow sensor.

Sensors Actuators A: Phys

., 1993, vol. 37–38, no. C, pp. 45–50.

DOI: 10.1016/0924-4247(93)80010-E

[25] Nguyen N.T., Dötzel W. Asymmetrical locations of heaters and sensors relative to each

other using heater arrays: A novel method for designing multi-range electrocaloric mass-flow

sensors.

Sensors and Actuators A: Phys

., 1997, vol. 62, no. 1-3, pp. 506–512.

DOI: S0924-4247(97)01529-X

[26]

Xu W., Song K., Ma S., Gao B., Chiu Yi, Lee Yi-K. Theoretical and experimental

investigations of thermoresistive micro calorimetric flow sensors fabricated by CMOS MEMS

technology.

J. Microelectromechanical Syst

., 2016, vol. 25, no. 5, pp. 954–962.

DOI: 10.1109/JMEMS.2016.2596282

[27]

Rasmussen A., Mavriplis C., Zaghloul M.E., Mikulchenko O., Mayaram K. Simulation

and optimization of a microfluidic flow sensor.

Sensors Actuators A: Phys

., 2001, vol. 88, no. 2,

pp. 121–132. DOI: 10.1016/S0924-4247(00)00503-3

[28]

Lien V., Vollmer F. Microfluidic flow rate detection based on integrated optical fiber

cantilever.

Lab Chip

, 2007, vol. 7, no. 10, pp. 1352–1356. DOI: 10.1039/B706944H

[29]

Lin C.-H., Lee G.-B., Lin Y.-H., Chang G.-L. A new fabrication process for ultra-thick

microfluidic microstructures utilizing SU-8 photoresist.

J. Micromechanics Microengineering

,

2002, vol. 12, no. 5, pp. 590–597. DOI: 10.1088/0960-1317/12/5/312

[30] McDonald J.C., Whitesides G.M. Poly(dimethylsiloxane) as a material for fabricating

microfluidic devices.

Acc. Chem. Res

., 2002, vol. 35, no. 7, pp. 491–499.

DOI: 10.1021/ar010110q

[31] Wu S., Lin Q., Yuen Y., Tai Yu-Ch. MEMS flow sensors for nano-fluidic applications.

Sensors Actuators A: Phys

., 2001, vol. 89, no. 1-2, pp. 152–158.

DOI: 10.1016/S0924-4247(00)00541-0

[32]

Landau L.D., Lifshits E.M. Teoreticheskaya fizika. Gidrodinamika [Theoretical physic.

Hydrodynamics]. Moscow, Fizmatlit Publ., 2001. 736 p.