Previous Page  10 / 15 Next Page
Information
Show Menu
Previous Page 10 / 15 Next Page
Page Background

Численное моделирование процессов тепломассопереноса…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5

79

2.

Rapid

microchip-based electrophoretic immunoassays for the detection of swine influenza

virus / D.S. Reichmuth, S.K. Wang, L.M. Barrett, D.J. Throckmorton, W. Einfeldb, A.K. Singha //

Lab Chip. 2008. Vol. 8. No. 8. P. 1319–1324. DOI: 10.1039/b801396a

3.

Kawabata T., Wada H.G., Watanabe M., Satomura S.

Electrokinetic analyte transport assay for

-fetoprotein immunoassay integrates mixing, reaction and separation on-chip // Electrophoresis.

2008. Vol. 29. Iss. 7. P. 1399–1406. DOI: 10.1002/elps.200700898

4.

Dishinger J.F., Reid K.R., Kennedy R.T.

Quantitative monitoring of insulin secretion from single

islets of langerhans in parallel on a microfluidic chip // Anal. Chem. 2009. Vol. 81. No. 8. P. 3119–

3127. DOI: 10.1021/ac900109t

5.

Jokerst J.V., Raamanathan A., Christodoulides N., et al.

Nano-bio-chips for high performance

multiplexed protein Detection: Determinations of cancer biomarkers in serum and saliva using

quantum dot bioconjugate labels // Biosens. Bioelectron. 2009. Vol. 24. Iss. 12. P. 3622–3629.

DOI: 10.1016/j.bios.2009.05.026

6.

Effect

of volume- and time-based constraints on capture of analytes in microfluidic hetero-

geneous immunoassays / H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wanga,

S.K. Sia // Lab Chip. 2008. Vol. 8. No. 12. P. 2062–2070. DOI: 10.1039/B813350F

7.

Using

microfluidics to decouple nucleation and growth of protein crystals / J. Shim,

G. Cristobal, D.R. Link, T. Thorsen, S. Fraden // Cryst. Growth Des. 2007. Vol. 7. No. 11.

P. 2192–2194. DOI: 10.1021/cg700688f

8.

Zheng B., Tice J.D., Roach L.S., Ismagilov R.F.

A droplet-based, composite PDMS/glass capillary

microfluidic system for evaluating protein crystallization conditions by microbatch and

vapor-diffusion methods with on-chip X-ray diffraction // Angew. Chem. 2004. Vol. 43. No. 19.

P. 2508–2511. DOI: 10.1002/anie.200453974

9.

Barbier V., Viovy J.-L

. Advanced polymers for DNA separation // Curr. Opin. Biotechnol. 2003.

Vol. 14. No. 1. P. 51–57.

10.

Microfluidics-to

-

mass

spectrometry: A review of coupling methods and applications /

X. Wang, L. Yi, N. Mukhitov, A.M. Schrell, R. Dhumpa, M.G. Roper // J. Chromatography A.

2015. Vol. 1382. P. 98–116. DOI: 10.1016/j.chroma.2014.10.039

11.

Lomasney A.R., Yi L., Roper M.G.

Simultaneous monitoring of insulin and islet amyloid

polypeptide secretion from islets of langerhans on a microfluidic device // Anal. Chem. 2013.

Vol. 85. No. 16. P. 7919–7925. DOI: 10.1021/ac401625g

12.

Ramsey R.S., Ramsey J.M.

Generating electrospray from microchip devices using

electroosmotic pumping // Anal. Chem. 1997. Vol. 69. No. 6. P. 1174–1178.

DOI: 10.1021/ac9610671

13.

Dittrich P.S., Manz A

. Lab-on-a-chip: Microfluidics in drug discovery // Nat. Publ. Gr. 2006.

Vol. 5. P. 210–218. DOI: 10.1038/nrd1985

14.

Pihl J., Karlsson M., Chiu D.T.

Microfluidic technologies in drug discovery // Drug Discov.

Today. 2005. Vol. 10. No. 20. P. 1377–1383. DOI: 10.1016/S1359-6446(05)03571-3

15.

A microfluidic

device to confine a single cardiac myocyte in a sub-nanoliter volume on planar

microelectrodes for extracellular potential recordings / A.A. Werdich, E.A. Lima, B. Ivanov, I. Ges,

J.P. Wikswo, F.J. Baudenbacher // Miniaturisation Chem. Biol. Bioeng. 2004. Vol. 4. No. 4.

P. 357–362. DOI: 10.1039/b315648f

16.

Zhang Huaibin

. Bioanalytical applications of microfluidic devices. Diss. University of Illinois,

2010. 147 p.