Численное моделирование процессов тепломассопереноса…
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5
79
2.
Rapid
microchip-based electrophoretic immunoassays for the detection of swine influenza
virus / D.S. Reichmuth, S.K. Wang, L.M. Barrett, D.J. Throckmorton, W. Einfeldb, A.K. Singha //
Lab Chip. 2008. Vol. 8. No. 8. P. 1319–1324. DOI: 10.1039/b801396a
3.
Kawabata T., Wada H.G., Watanabe M., Satomura S.
Electrokinetic analyte transport assay for
-fetoprotein immunoassay integrates mixing, reaction and separation on-chip // Electrophoresis.
2008. Vol. 29. Iss. 7. P. 1399–1406. DOI: 10.1002/elps.200700898
4.
Dishinger J.F., Reid K.R., Kennedy R.T.
Quantitative monitoring of insulin secretion from single
islets of langerhans in parallel on a microfluidic chip // Anal. Chem. 2009. Vol. 81. No. 8. P. 3119–
3127. DOI: 10.1021/ac900109t
5.
Jokerst J.V., Raamanathan A., Christodoulides N., et al.
Nano-bio-chips for high performance
multiplexed protein Detection: Determinations of cancer biomarkers in serum and saliva using
quantum dot bioconjugate labels // Biosens. Bioelectron. 2009. Vol. 24. Iss. 12. P. 3622–3629.
DOI: 10.1016/j.bios.2009.05.026
6.
Effect
of volume- and time-based constraints on capture of analytes in microfluidic hetero-
geneous immunoassays / H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wanga,
S.K. Sia // Lab Chip. 2008. Vol. 8. No. 12. P. 2062–2070. DOI: 10.1039/B813350F
7.
Using
microfluidics to decouple nucleation and growth of protein crystals / J. Shim,
G. Cristobal, D.R. Link, T. Thorsen, S. Fraden // Cryst. Growth Des. 2007. Vol. 7. No. 11.
P. 2192–2194. DOI: 10.1021/cg700688f
8.
Zheng B., Tice J.D., Roach L.S., Ismagilov R.F.
A droplet-based, composite PDMS/glass capillary
microfluidic system for evaluating protein crystallization conditions by microbatch and
vapor-diffusion methods with on-chip X-ray diffraction // Angew. Chem. 2004. Vol. 43. No. 19.
P. 2508–2511. DOI: 10.1002/anie.200453974
9.
Barbier V., Viovy J.-L
. Advanced polymers for DNA separation // Curr. Opin. Biotechnol. 2003.
Vol. 14. No. 1. P. 51–57.
10.
Microfluidics-to
-
mass
spectrometry: A review of coupling methods and applications /
X. Wang, L. Yi, N. Mukhitov, A.M. Schrell, R. Dhumpa, M.G. Roper // J. Chromatography A.
2015. Vol. 1382. P. 98–116. DOI: 10.1016/j.chroma.2014.10.039
11.
Lomasney A.R., Yi L., Roper M.G.
Simultaneous monitoring of insulin and islet amyloid
polypeptide secretion from islets of langerhans on a microfluidic device // Anal. Chem. 2013.
Vol. 85. No. 16. P. 7919–7925. DOI: 10.1021/ac401625g
12.
Ramsey R.S., Ramsey J.M.
Generating electrospray from microchip devices using
electroosmotic pumping // Anal. Chem. 1997. Vol. 69. No. 6. P. 1174–1178.
DOI: 10.1021/ac9610671
13.
Dittrich P.S., Manz A
. Lab-on-a-chip: Microfluidics in drug discovery // Nat. Publ. Gr. 2006.
Vol. 5. P. 210–218. DOI: 10.1038/nrd1985
14.
Pihl J., Karlsson M., Chiu D.T.
Microfluidic technologies in drug discovery // Drug Discov.
Today. 2005. Vol. 10. No. 20. P. 1377–1383. DOI: 10.1016/S1359-6446(05)03571-3
15.
A microfluidic
device to confine a single cardiac myocyte in a sub-nanoliter volume on planar
microelectrodes for extracellular potential recordings / A.A. Werdich, E.A. Lima, B. Ivanov, I. Ges,
J.P. Wikswo, F.J. Baudenbacher // Miniaturisation Chem. Biol. Bioeng. 2004. Vol. 4. No. 4.
P. 357–362. DOI: 10.1039/b315648f
16.
Zhang Huaibin
. Bioanalytical applications of microfluidic devices. Diss. University of Illinois,
2010. 147 p.