Previous Page  13 / 15 Next Page
Information
Show Menu
Previous Page 13 / 15 Next Page
Page Background

В.В. Рыжков, А.В. Зверев, И.А. Родионов

82

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5

[2] Reichmuth D.S., Wang S.K., Barrett L.M., Throckmorton D.J., Einfeldb W., Singha A.K.

Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza

virus.

Lab Chip

, 2008, vol. 8, no. 8, pp. 1319–1324. DOI: 10.1039/b801396a

[3] Kawabata T., Wada H.G., Watanabe M., Satomura S. Electrokinetic analyte transport assay

for

-fetoprotein immunoassay integrates mixing, reaction and separation on-chip.

Electrophoresis

, 2008, vol. 29, iss. 7, pp. 1399–1406. DOI: 10.1002/elps.200700898

[4] Dishinger J.F., Reid K.R., Kennedy R.T. Quantitative monitoring of insulin secretion from

single islets of langerhans in parallel on a microfluidic chip.

Anal. Chem

., 2009, vol. 81, no. 8,

pp. 3119–3127. DOI: 10.1021/ac900109t

[5]

Jokerst J.V., Raamanathan A., Christodoulides N., Floriano P.N., Pollard A.A., Simmon-

sa H.W., Wong J., Gage C., Furmaga W.B., Redding S.W., McDevitt J.T. Nano-bio-chips for

high performance multiplexed protein detection: Determinations of cancer biomarkers in

serum and saliva using quantum dot bioconjugate labels.

Biosens. Bioelectron

., 2009, vol. 24,

iss. 12, pp. 3622–3629. DOI: 10.1016/j.bios.2009.05.026

[6] Parsa H., Chin C.D., Mongkolwisetwara P., Lee B.W., Wanga J.J., Sia S.K. Effect of volume-

and time-based constraints on capture of analytes in microfluidic heterogeneous

immunoassays.

Lab Chip

, 2008, vol. 8, no. 12, pp. 2062–2070. DOI: 10.1039/B813350F

[7]

Shim J., Cristobal G., Link D.R., Thorsen T., Fraden S. Using microfluidics to decouple

nucleation and growth of protein crystals.

Cryst. Growth Des

., 2007, vol. 7, no. 11,

pp. 2192–2194. DOI: 10.1021/cg700688f

[8] Zheng B., Tice J.D., Roach L.S., Ismagilov R.F. A droplet-based, composite PDMS/glass

capillary microfluidic system for evaluating protein crystallization conditions by microbatch

and vapor-diffusion methods with on-chip X-ray diffraction.

Angew. Chem.

, 2004, vol. 43,

no. 19, pp. 2508–2511. DOI: 10.1002/anie.200453974

[9] Barbier V., Viovy J.-L. Advanced polymers for DNA separation.

Curr. Opin. Biotechnol

.,

2003, vol. 14, no. 1, pp. 51–57.

[10] Wang X., Yi L., Mukhitov N., Schrell A.M., Dhumpa R., Roper M.G. Microfluidics-

to-mass spectrometry: A review of coupling methods and applications.

J. Chromatography A

,

2015, vol. 1382, pp. 98–116. DOI: 10.1016/j.chroma.2014.10.039

[11]

Lomasney A.R., Yi L., Roper M.G. Simultaneous monitoring of insulin and islet amyloid

polypeptide secretion from islets of langerhans on a microfluidic device.

Anal. Chem

., 2013,

vol. 85, no. 16, pp. 7919–7925. DOI: 10.1021/ac401625g

[12]

Ramsey R.S., Ramsey J.M. Generating electrospray from microchip devices using

electroosmotic pumping.

Anal. Chem

., 1997, vol. 69, no. 6, pp. 1174–1178.

DOI: 10.1021/ac9610671

[13] Dittrich P.S., Manz A. Lab-on-a-chip: Microfluidics in drug discovery.

Nat. Publ. Gr

.,

2006, vol. 5, pp. 210–218. DOI: 10.1038/nrd1985

[14]

Pihl J., Karlsson M., Chiu D.T. Microfluidic technologies in drug discovery.

Drug Discov

.

Today

. 2005, vol. 10, no. 20, pp. 1377–1383. DOI: 10.1016/S1359-6446(05)03571-3

[15] Werdich A.A., Lima E.A., Ivanov B., Ges I., Wikswo J.P., Baudenbacher F.J. A micro-

fluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar

microelectrodes for extracellular potential recordings.

Miniaturisation

Chem. Biol. Bioeng

.,

2004, vol. 4, no. 4, pp. 357–362. DOI: 10.1039/b315648f

[16]

Zhang Huaibin. Bioanalytical applications of microfluidic devices. Diss. University of

Illinois, 2010. 147 p.