В.В. Рыжков, А.В. Зверев, И.А. Родионов
82
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5
[2] Reichmuth D.S., Wang S.K., Barrett L.M., Throckmorton D.J., Einfeldb W., Singha A.K.
Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza
virus.
Lab Chip
, 2008, vol. 8, no. 8, pp. 1319–1324. DOI: 10.1039/b801396a
[3] Kawabata T., Wada H.G., Watanabe M., Satomura S. Electrokinetic analyte transport assay
for
-fetoprotein immunoassay integrates mixing, reaction and separation on-chip.
Electrophoresis
, 2008, vol. 29, iss. 7, pp. 1399–1406. DOI: 10.1002/elps.200700898
[4] Dishinger J.F., Reid K.R., Kennedy R.T. Quantitative monitoring of insulin secretion from
single islets of langerhans in parallel on a microfluidic chip.
Anal. Chem
., 2009, vol. 81, no. 8,
pp. 3119–3127. DOI: 10.1021/ac900109t
[5]
Jokerst J.V., Raamanathan A., Christodoulides N., Floriano P.N., Pollard A.A., Simmon-
sa H.W., Wong J., Gage C., Furmaga W.B., Redding S.W., McDevitt J.T. Nano-bio-chips for
high performance multiplexed protein detection: Determinations of cancer biomarkers in
serum and saliva using quantum dot bioconjugate labels.
Biosens. Bioelectron
., 2009, vol. 24,
iss. 12, pp. 3622–3629. DOI: 10.1016/j.bios.2009.05.026
[6] Parsa H., Chin C.D., Mongkolwisetwara P., Lee B.W., Wanga J.J., Sia S.K. Effect of volume-
and time-based constraints on capture of analytes in microfluidic heterogeneous
immunoassays.
Lab Chip
, 2008, vol. 8, no. 12, pp. 2062–2070. DOI: 10.1039/B813350F
[7]
Shim J., Cristobal G., Link D.R., Thorsen T., Fraden S. Using microfluidics to decouple
nucleation and growth of protein crystals.
Cryst. Growth Des
., 2007, vol. 7, no. 11,
pp. 2192–2194. DOI: 10.1021/cg700688f
[8] Zheng B., Tice J.D., Roach L.S., Ismagilov R.F. A droplet-based, composite PDMS/glass
capillary microfluidic system for evaluating protein crystallization conditions by microbatch
and vapor-diffusion methods with on-chip X-ray diffraction.
Angew. Chem.
, 2004, vol. 43,
no. 19, pp. 2508–2511. DOI: 10.1002/anie.200453974
[9] Barbier V., Viovy J.-L. Advanced polymers for DNA separation.
Curr. Opin. Biotechnol
.,
2003, vol. 14, no. 1, pp. 51–57.
[10] Wang X., Yi L., Mukhitov N., Schrell A.M., Dhumpa R., Roper M.G. Microfluidics-
to-mass spectrometry: A review of coupling methods and applications.
J. Chromatography A
,
2015, vol. 1382, pp. 98–116. DOI: 10.1016/j.chroma.2014.10.039
[11]
Lomasney A.R., Yi L., Roper M.G. Simultaneous monitoring of insulin and islet amyloid
polypeptide secretion from islets of langerhans on a microfluidic device.
Anal. Chem
., 2013,
vol. 85, no. 16, pp. 7919–7925. DOI: 10.1021/ac401625g
[12]
Ramsey R.S., Ramsey J.M. Generating electrospray from microchip devices using
electroosmotic pumping.
Anal. Chem
., 1997, vol. 69, no. 6, pp. 1174–1178.
DOI: 10.1021/ac9610671
[13] Dittrich P.S., Manz A. Lab-on-a-chip: Microfluidics in drug discovery.
Nat. Publ. Gr
.,
2006, vol. 5, pp. 210–218. DOI: 10.1038/nrd1985
[14]
Pihl J., Karlsson M., Chiu D.T. Microfluidic technologies in drug discovery.
Drug Discov
.
Today
. 2005, vol. 10, no. 20, pp. 1377–1383. DOI: 10.1016/S1359-6446(05)03571-3
[15] Werdich A.A., Lima E.A., Ivanov B., Ges I., Wikswo J.P., Baudenbacher F.J. A micro-
fluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar
microelectrodes for extracellular potential recordings.
Miniaturisation
Chem. Biol. Bioeng
.,
2004, vol. 4, no. 4, pp. 357–362. DOI: 10.1039/b315648f
[16]
Zhang Huaibin. Bioanalytical applications of microfluidic devices. Diss. University of
Illinois, 2010. 147 p.