Previous Page  11 / 15 Next Page
Information
Show Menu
Previous Page 11 / 15 Next Page
Page Background

В.В. Рыжков, А.В. Зверев, И.А. Родионов

80

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5

17.

Rhoads D.S., Guan J.-L

. Analysis of directional cell migration on defined FN gradients: Role of

intracellular signaling molecules // Exp. Cell Res. 2007. Vol. 313. No. 18. P. 3859–3867.

DOI: 10.1016/j.yexcr.2007.06.005

18.

Doyle P.S.

Self-assembled magnetic matrices for DNA separation chips // Science. 2002.

Vol. 295. No. 5563. P. 2237–2237. DOI: 10.1126/science.1068420

19.

Microfluidic

systems for biosensing / K.-K. Liu, R.-G. Wu, Y.-J. Chuang, H.S. Khoo,

S.-H. Huang, F.-G. Tseng // Sensors. 2010. Vol. 10. No. 7. P. 6623–6661. DOI: 10.3390/s100706623

20.

Single-pulse

cell stimulation with a near-infrared picosecond laser / S. Iwanaga, N. Smith,

K. Fujita, S. Kawata, O. Nakamura // Appl. Phys. Lett. 2005. Vol. 87. No. 24. P. 243901.

DOI: 10.1063/1.2147733

21.

Dittrich P.S., Manz A.

Single-molecule fluorescence detection in microfluidic channels —

the

Holy Grail in μTAS? // Anal. Bioanal. Chem. 2005. Vol. 382. Iss. 8. P. 1771–1782.

DOI: 10.1007/s00216-005-3335-9

22.

Mayer F., Salis G., Funk J., Paul O., Baltes H.

Scaling of thermal CMOS gas flow microsensors:

Experiment and simulation // Proc. of the IEEE Micro Electro Mechanical Systems (MEMS).

P. 116–121. DOI: 10.1109/MEMSYS.1996.493839

23.

Komiya K., Higuchi F., Ohtani K.

Characteristics of a thermal gas flowmeter // Rev. Sci.

Instrum. 1988. Vol. 59. No. 3. P. 477–479. DOI: 10.1063/1.1139864

24.

Lammerink T.S.J., Tas N.R., Elwenspoek M., Fluitman J.H.J.

Micro-liquid flow sensor //

Sensors Actuators A: Phys. 1993. Vol. 37–38. No. C. P. 45–50.

DOI: 10.1016/0924-4247(93)80010-E

25.

Nguyen N.T., Dötzel W.

Asymmetrical locations of heaters and sensors relative to each other

using heater arrays: A novel method for designing multi-range electrocaloric mass-flow sensors //

Sensors and Actuators A: Phys. 1997. Vol. 62. No. 1-3. P. 506–512. DOI: S0924-4247(97)01529-X

26.

Theoretical

and experimental investigations of thermoresistive micro calorimetric flow sensors

fabricated by CMOS MEMS technology / W. Xu, K. Song, S. Ma, B. Gao, Yi Chiu, Yi-K. Lee //

J. Microelectromechanical Syst. 2016. Vol. 25. No. 5. P. 954–962.

DOI: 10.1109/JMEMS.2016.2596282

27.

Simulation

and optimization of a microfluidic flow sensor / A. Rasmussen, C. Mavriplis,

M.E. Zaghloul, O. Mikulchenko, K. Mayaram // Sensors Actuators A: Phys. 2001. Vol. 88. No. 2.

P. 121–132. DOI: 10.1016/S0924-4247(00)00503-3

28.

Lien V., Vollmer F.

Microfluidic flow rate detection based on integrated optical fiber canti-

lever // Lab Chip. 2007. Vol. 7. No. 10. P. 1352–1356. DOI: 10.1039/B706944H

29.

A new

fabrication process for ultra-thick microfluidic microstructures utilizing SU-8

photoresist / C.-H. Lin, G.-B. Lee, Y.-H. Lin, G.-L. Chang // J. Micromechanics Microengineering.

2002. Vol. 12. No. 5. P. 590–597. DOI: 10.1088/0960-1317/12/5/312

30.

McDonald J.C., Whitesides G.M

. Poly(dimethylsiloxane) as a material for fabricating

microfluidic devices // Acc. Chem. Res. 2002. Vol. 35. No. 7. P. 491–499. DOI: 10.1021/ar010110q

31.

Wu S., Lin Q., Yuen Y., Tai Yu-Ch

. MEMS flow sensors for nano-fluidic applications //

Sensors Actuators A: Phys. 2001. Vol. 89. No. 1-2. P. 152–158.

DOI: 10.1016/S0924-4247(00)00541-0

32. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. М.: Физматлит,

2001. 736 с.