В.В. Рыжков, А.В. Зверев, И.А. Родионов
80
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5
17.
Rhoads D.S., Guan J.-L
. Analysis of directional cell migration on defined FN gradients: Role of
intracellular signaling molecules // Exp. Cell Res. 2007. Vol. 313. No. 18. P. 3859–3867.
DOI: 10.1016/j.yexcr.2007.06.005
18.
Doyle P.S.
Self-assembled magnetic matrices for DNA separation chips // Science. 2002.
Vol. 295. No. 5563. P. 2237–2237. DOI: 10.1126/science.1068420
19.
Microfluidic
systems for biosensing / K.-K. Liu, R.-G. Wu, Y.-J. Chuang, H.S. Khoo,
S.-H. Huang, F.-G. Tseng // Sensors. 2010. Vol. 10. No. 7. P. 6623–6661. DOI: 10.3390/s100706623
20.
Single-pulse
cell stimulation with a near-infrared picosecond laser / S. Iwanaga, N. Smith,
K. Fujita, S. Kawata, O. Nakamura // Appl. Phys. Lett. 2005. Vol. 87. No. 24. P. 243901.
DOI: 10.1063/1.2147733
21.
Dittrich P.S., Manz A.
Single-molecule fluorescence detection in microfluidic channels —
the
Holy Grail in μTAS? // Anal. Bioanal. Chem. 2005. Vol. 382. Iss. 8. P. 1771–1782.
DOI: 10.1007/s00216-005-3335-9
22.
Mayer F., Salis G., Funk J., Paul O., Baltes H.
Scaling of thermal CMOS gas flow microsensors:
Experiment and simulation // Proc. of the IEEE Micro Electro Mechanical Systems (MEMS).
P. 116–121. DOI: 10.1109/MEMSYS.1996.493839
23.
Komiya K., Higuchi F., Ohtani K.
Characteristics of a thermal gas flowmeter // Rev. Sci.
Instrum. 1988. Vol. 59. No. 3. P. 477–479. DOI: 10.1063/1.1139864
24.
Lammerink T.S.J., Tas N.R., Elwenspoek M., Fluitman J.H.J.
Micro-liquid flow sensor //
Sensors Actuators A: Phys. 1993. Vol. 37–38. No. C. P. 45–50.
DOI: 10.1016/0924-4247(93)80010-E
25.
Nguyen N.T., Dötzel W.
Asymmetrical locations of heaters and sensors relative to each other
using heater arrays: A novel method for designing multi-range electrocaloric mass-flow sensors //
Sensors and Actuators A: Phys. 1997. Vol. 62. No. 1-3. P. 506–512. DOI: S0924-4247(97)01529-X
26.
Theoretical
and experimental investigations of thermoresistive micro calorimetric flow sensors
fabricated by CMOS MEMS technology / W. Xu, K. Song, S. Ma, B. Gao, Yi Chiu, Yi-K. Lee //
J. Microelectromechanical Syst. 2016. Vol. 25. No. 5. P. 954–962.
DOI: 10.1109/JMEMS.2016.2596282
27.
Simulation
and optimization of a microfluidic flow sensor / A. Rasmussen, C. Mavriplis,
M.E. Zaghloul, O. Mikulchenko, K. Mayaram // Sensors Actuators A: Phys. 2001. Vol. 88. No. 2.
P. 121–132. DOI: 10.1016/S0924-4247(00)00503-3
28.
Lien V., Vollmer F.
Microfluidic flow rate detection based on integrated optical fiber canti-
lever // Lab Chip. 2007. Vol. 7. No. 10. P. 1352–1356. DOI: 10.1039/B706944H
29.
A new
fabrication process for ultra-thick microfluidic microstructures utilizing SU-8
photoresist / C.-H. Lin, G.-B. Lee, Y.-H. Lin, G.-L. Chang // J. Micromechanics Microengineering.
2002. Vol. 12. No. 5. P. 590–597. DOI: 10.1088/0960-1317/12/5/312
30.
McDonald J.C., Whitesides G.M
. Poly(dimethylsiloxane) as a material for fabricating
microfluidic devices // Acc. Chem. Res. 2002. Vol. 35. No. 7. P. 491–499. DOI: 10.1021/ar010110q
31.
Wu S., Lin Q., Yuen Y., Tai Yu-Ch
. MEMS flow sensors for nano-fluidic applications //
Sensors Actuators A: Phys. 2001. Vol. 89. No. 1-2. P. 152–158.
DOI: 10.1016/S0924-4247(00)00541-0
32. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. М.: Физматлит,
2001. 736 с.