Д.Е. Супрун
98
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 5
3D view, presence of noise and illumination changes. The
scale-invariant feature transform (SIFT) method was used for
matching images. The paper offers method implementation
based on the pyramid of Gaussians and the Difference of
Gaussian (DoG). The algorithm provides an oportunity to
find the local extreme point, to detect key points, to build a
feature vector and to compare local descriptors for further
image pair matching under conditions of rotation, overlap,
scale, change in point of shooting or lighting
REFERENCES
[1] Gaganov V. Invariant algorithms comparison point features in images.
Komp'yuternaya
grafika i mul'timedia
[Computergraphics and Multimedia], 2009, no. 7 (1) Available at:
http://cgm.computergraphics.ru/issues/issue17/invariant_features[2] Grigor'ev Yu.A., Revunkov G.I. Banki dannykh [Databases]. Moscow, MGTU im. N.E. Bau-
mana Publ., 2002. 318 p.
[3] Suprun D.E., Matveev V.A. The algorithm for creating a virtual mini-museum.
Vestn.
Mosk. Gos. Tekh. Univ. im. N.E. Baumana
.
Priborostr.
[Herald of the Bauman Moscow State
Tech. Univ., Instrum. Eng.], 2013, no. 4, pp. 67–78 (in Russ).
[4] Pope A., Lowe D. Probabilistic models of appearance for 3-D object recognition.
Interna-
tional Journal of Computer Vision
, 2000, vol. 40 (2), pp. 149–167.
[5] Meng Y. Implementing the Scale Invariant Feature Transform (SIFT) Method.
Computer
Science Department University of British Columbia Vancouver
, B.C., Canada, 2006.
[6] Brown M., Winder S., Szeliski R. Multi-image matching using multi-scale oriented patches.
Conference on Computer Vision and Pattern Recognition
, 2005, pp. 510–517.
[7] Lowe D. Distinctive image features from scale-invariant key points.
Computer Science De-
partment University of British Columbia Vancouver
, B.C., Canada, 2004.
Suprun D.E.
— post-graduate student of Systems of Data Processing and Control Depart-
ment, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation).
Please cite this article in English as:
Suprun D.E. Image-Matching Algorithm using Key Points with Scalability and Rotation of
Objects.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.
[Herald of the Bauman
Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 5, pp. 86–98.
DOI: 10.18698/0236-3933-2016-5-86-98