Previous Page  13 / 13
Information
Show Menu
Previous Page 13 / 13
Page Background

Д.Е. Супрун

98

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 5

3D view, presence of noise and illumination changes. The

scale-invariant feature transform (SIFT) method was used for

matching images. The paper offers method implementation

based on the pyramid of Gaussians and the Difference of

Gaussian (DoG). The algorithm provides an oportunity to

find the local extreme point, to detect key points, to build a

feature vector and to compare local descriptors for further

image pair matching under conditions of rotation, overlap,

scale, change in point of shooting or lighting

REFERENCES

[1] Gaganov V. Invariant algorithms comparison point features in images.

Komp'yuternaya

grafika i mul'timedia

[Computergraphics and Multimedia], 2009, no. 7 (1) Available at:

http://cgm.computergraphics.ru/issues/issue17/invariant_features

[2] Grigor'ev Yu.A., Revunkov G.I. Banki dannykh [Databases]. Moscow, MGTU im. N.E. Bau-

mana Publ., 2002. 318 p.

[3] Suprun D.E., Matveev V.A. The algorithm for creating a virtual mini-museum.

Vestn.

Mosk. Gos. Tekh. Univ. im. N.E. Baumana

.

Priborostr.

[Herald of the Bauman Moscow State

Tech. Univ., Instrum. Eng.], 2013, no. 4, pp. 67–78 (in Russ).

[4] Pope A., Lowe D. Probabilistic models of appearance for 3-D object recognition.

Interna-

tional Journal of Computer Vision

, 2000, vol. 40 (2), pp. 149–167.

[5] Meng Y. Implementing the Scale Invariant Feature Transform (SIFT) Method.

Computer

Science Department University of British Columbia Vancouver

, B.C., Canada, 2006.

[6] Brown M., Winder S., Szeliski R. Multi-image matching using multi-scale oriented patches.

Conference on Computer Vision and Pattern Recognition

, 2005, pp. 510–517.

[7] Lowe D. Distinctive image features from scale-invariant key points.

Computer Science De-

partment University of British Columbia Vancouver

, B.C., Canada, 2004.

Suprun D.E.

— post-graduate student of Systems of Data Processing and Control Depart-

ment, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation).

Please cite this article in English as:

Suprun D.E. Image-Matching Algorithm using Key Points with Scalability and Rotation of

Objects.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.

[Herald of the Bauman

Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 5, pp. 86–98.

DOI: 10.18698/0236-3933-2016-5-86-98