Полное факториальное моделирование равномерных последовательностей…
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 5
147
Просьба ссылаться на эту статью следующим образом:
Деон А.Ф., Меняев Ю.А. Полное факториальное моделирование равномерных последо-
вательностей целых случайных величин // Вестник МГТУ им. Н.Э. Баумана. Сер. При-
боростроение. 2017. № 5. C. 132–149. DOI: 10.18698/0236-3933-2017-5-132-149
COMPLETE FACTORIAL SIMULATION OF INTEGER RANDOM NUMBER
UNIFORM SEQUENCES
A.F. Deon
1
deonalex@mail.ruYu.A. Menyaev
2
yamenyaev@uams.edu1
Bauman Moscow State Technical University, Moscow, Russian Federation
2
Winthrop P. Rockefeller Cancer Institute, Little Rock, USA
Abstract
Keywords
Random sequences are widely used in theoretical and
practical areas of interests in human and technical activi-
ties. An important part of these fields refers to the proce-
dures of producing stochastic values. One direction adapts
the sequenced generation of pseudorandom numbers and
the other direction uses a complete set of all stochastic
sequences. The first direction is well studied and traditio-
nally applied in varies areas ranging from cryptography
and technical systems to medical and biological trials. The
second direction generally uses systems for preliminary
universal testing. In this paper, we follow the second direc-
tion, where the underlying approaches in modern genera-
tors of random numbers are considered. In some of the
modern random numbers generators the skipping and
repeating random values may be found. We have formed
the requirements that if followed help to solve the prob-
lems of skipping and repeating. Moreover, we propose
novel algorithms based on factorial expansion which pro-
vide fast generation of such sequences. Finally, we describe
advantages and disadvantages of findings of our research
Computer simulation, random
number generator, stochastic
sequences algorithm
Received 29.06.2017
© BMSTU, 2017
REFERENCES
[1]
Leva J.L. A fast normal random number generator.
TOMS
, 1992, vol. 18, iss. 4, pp. 449–453.
DOI: 10.1145/138351.138364
[2] Applebaum B. Pseudorandom generators with long stretch and low locality from random
local one-way functions.
Proc. 44th Annual ACM Symposium on Theory of Computing
, New
York, ACM, 2012, pp. 805–816. DOI: 10.1145/2213977.2214050
[3] White D.R., Clark J., Jacob J., Poulding S.M. Searching for resource-efficient programs:
Low-power pseudorandom number generators.
Proc. 10th Annual Conf. on Genetic and Evolu-
tionary Computation
, New York, ACM, 2008, pp. 1775–1782. DOI: 10.1145/1389095.1389437
Available at:
http://dl.acm.org/citation.cfm?doid=1389095.1389437