Модифицированный метод классификации многомерных временных рядов…
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2
65
[9] Lines J., Bagnall A. Alternative quality measures for time series shapelets.
Intelligent Data
Engineering and Automated Learning — IDEAL 2012
. 2012, vol. 7435, pp. 475–483.
[10] Chen P.H., Lin C.J., Scholkopf B. A tutorial on ν-support vector machines.
Applied
Stochastic Models in Business and Industry
, 2005, vol. 21, no. 2, pp. 111–136.
DOI: 10.1002/asmb.537
Available at:
http://onlinelibrary.wiley.com/doi/10.1002/asmb.537/abstract[11] Nessonova M.N. Method of rating voting of algorithms committee in classification tasks
with teacher.
Zaporozhskiy meditsinskiy zhurnal
, 2013, no. 1, pp. 101–102 (in Russ.).
DOI: 10.14739/2310-1210.2013.1.15533
Available at:
http://zmj.zsmu.edu.ua/article/view/15533[12] Kubat M., Holte R., Matwin S. Learning when negative examples abound.
Proc. 9th Euro-
pean Conf. on Machine Learning. LNCS
. 1997, vol. 1224, pp. 146–153.
[13] Anand A., Pugalenthi G., Fogel G.B., Suganthan P. An approach for classification of high-
ly imbalanced data using weighting and undersampling.
Amino Acids
, 2010, vol. 39, no. 5,
pp. 1385–1391. DOI: 10.1007/
s00726-010-0595-2
Available at:
http://link.springer.com/article/10.1007/s00726-010-0595-2[14] Hoffmann U., Vesin J., Diserens K., Ebrahimi T. An efficient P300-based brain-computer
interface for disabled subjects.
Journal of Neuroscience Methods
, 2008, vol. 167, no. 1,
pp. 115–125. DOI: 10.1016/j.jneumeth.2007.03.005
Available at:
http://www.sciencedirect.com/science/article/pii/S0165027007001094[15] Riccio A., Schettini F., Pizzimenti A. Attention and P300-based BCI performance in
people with amyotrophic lateral sclerosis.
Frontiers in Human Neuroscience
, 2013, vol. 7,
article no. 732. DOI: 10.3389/fnhum.2013.00732
Available at:
http://journal.frontiersin.org/article/10.3389/fnhum.2013.00732/fullKarpenko A.P. —
Dr. Sc. (Phys.-Math.), Assoc. Professor, Head of Computer Aided Design
Systems Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5,
Moscow, 105005 Russian Federation).
Sotnikov P.I. —
post-graduate student of Computer Aided Design Systems Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation), project manager at ZAO “Informtekhnika and Svyaz” (Verkhnyaya
Krasnosel'skaya ul. 2/1, str. 1, Moscow, 107140 Russian Federation).
Please cite this article in English as:
Karpenko A.P., Sotnikov P.I. Modified Classification Method of Multivariate Time Series Based
on Shapelets.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.
[Herald of the Bau-
man Moscow State Tech. Univ., Instrum. Eng.], 2017, no. 2, pp. 46–65.
DOI: 10.18698/0236-3933-2017-2-46-65