Previous Page  24 / 25 Next Page
Information
Show Menu
Previous Page 24 / 25 Next Page
Page Background

Генератор равномерных случайных величин по технологии полного вихревого массива

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

109

[4] Deon A.F., Menyaev Yu.A. The complete set simulation of stochastic sequences without

repeated and skipped elements.

Journal of Universal Computer Science

, 2016, vol. 22, no. 8,

pp. 1023–1047. DOI: 10.3217/jucs-022-08-1023

Available at:

http://www.jucs.org/jucs_22_8/the_complete_set_simulation

[5] Entacher K. Bad subsequences of well-known linear congruential pseudorandom number

generators.

ACM TOMACS

, 1998, vol. 8, no. 1, pp. 61–70. DOI: 10.1145/272991.273009

Available at:

http://dl.acm.org/citation.cfm?doid=272991.273009

[6] Leeb H., Wegenkittl S. Inversive and linear congruential pseudorandom number genera-

tors in empirical tests.

ACM TOMACS

, 1997, vol. 7, pp. 272–286. DOI: 10.1145/249204.249208

Available at:

http://dl.acm.org/citation.cfm?doid=249204.249208

[7] Park S.K., Miller K.W. Random number generators: good ones are hard to find.

Communi-

cation of the ACM

, 1988, vol. 31, no. 10, pp. 1192–1201. DOI: 10.1145/63039.63042

Available at:

http://dl.acm.org/citation.cfm?doid=63039.63042

[8] Menyaev Yu.A., Nedosekin D.A., Sarimollaoglu M., Juratli M.A., Galanzha E.I., Tuchin V.V.,

Zharov V.P. Optical clearing in photoacoustic flowcytometry.

Biomed. Opt. Express

., 2013, vol. 4,

no. 12, pp. 3030–3041. DOI: 10.1364/BOE.4.003030

Available at:

https://www.osapublishing.org/boe/abstract.cfm?uri=boe-4-12-3030

[9] Wiese K.C., Hendriks A., Deschenes A., Youssef V.V. The impact of pseudorandom num-

ber quality on P-RnaPredict, a parallel genetic algorithm for RNA secondary structure predic-

tion.

GECCO ’05. Proc. 7th Annual Conf. on Genetic and Evolutionary Computation

, 2005,

pp. 479–480. DOI: 10.1145/1068009.1068089

Available at:

http://dl.acm.org/citation.cfm?doid=1068009.1068089

[10] Leonard P., Jackson D. Efficient evolution of high entropy RNGs using single node gene-

tic programming.

GECCO ’15. Proc. of the 2015 Annual Conf. on Genetic and Evolutionary

Computation

, 2015, pp. 1071–1078. DOI: 10.1145/2739480.2754820

Available at:

http://dl.acm.org/citation.cfm?doid=2739480.2754820

[11] Niederreiter H. Some linear and nonlinear methods for pseudorandom number genera-

tion.

WSC '95. Proc. of the 27th Conf. on Winter Simulation

, 1995, pp. 250–254.

DOI: 10.1145/224401.224611 Available at:

http://dl.acm.org/citation.cfm?doid=224401.224611

[12] Entacher K. Parallel streams of linear random numbers in the spectral test.

ACM

TOMACS

, 1999, vol. 9, no. 1, pp. 31–44. DOI: 10.1145/301677.301682

Available at:

http://dl.acm.org/citation.cfm?doid=301677.301682

[13] Matsumoto M., Nishimura T. Mersenne twister: a 623-dimensionnally equidistributed

uniform pseudorandom number generator.

ACM TOMACS

, 1998, vol. 8, no. 1, pp. 3–30.

DOI: 10.1145/272991.272995 Available at:

http://dl.acm.org/citation.cfm?doid=272991.272995

[14] Nishimura T. Tables of 64-bit Mersenne twisters.

ACM TOMACS

, 2000, vol. 10, no. 4,

pp. 348–357. DOI: 10.1145/369534.369540

Available at:

http://dl.acm.org/citation.cfm?doid=369534.369540

[15] Makino J. Lagged-Fibonacci random number generators on parallel computers.

Parallel

Comput

., 1994, vol. 20, no. 9, pp. 1357–1367. DOI: 10.1016/0167-8191(94)90042-6

Available at:

http://www.sciencedirect.com/

science/article/pii/0167819194900426?via%3Dihub

[16] Aluru S. Lagged Fibonacci random number generators for distributed memory parallel

computers.

J. Parallel Distr. Com

., 1997, vol. 45, no. 1, pp. 1–12. DOI: 10.1006/jpdc.1997.1363

Available at:

http://www.sciencedirect.com/

science/article/pii/S0743731597913630?via%3Dihub