Previous Page  21 / 25 Next Page
Information
Show Menu
Previous Page 21 / 25 Next Page
Page Background

А.Ф. Деон, Ю.А. Меняев

106

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

ЛИТЕРАТУРА

1.

Cryptanalysis

of DES implemented on computers with cache / Y. Tusnoo, T. Saito, T. Suza-

ki, M. Shigeri, H. Miyauchi // Proc. Cryptographic Hardware and Embedded Systems —

CHES 2003. 5th International Workshop. 2003. Р. 62–76. DOI: 10.1007/978-3-540-45238-6_6

URL:

http://link.springer.com/chapter/10.1007%2F978-3-540-45238-6_6

2.

Ozturk E., Sunar В., Savas Е.

Low-power elliptic curve cryptography using scaled modular

arithmetic // Proc. Cryptographic Hardware and Embedded Systems — CHES 2004. 6th Inter-

national Workshop. Р. 92–106. DOI: 10.1007/978-3-540-28632-5_7

URL:

http://link.springer.com/chapter/10.1007%2F978-3-540-28632-5_7

3.

Panneton F., L'Ecuyer Р., Matsumoto М.

Improved long-period generators based on linear

recurrences modulo 2 // ACM TOMS. 2006. Vol. 32. No.1. Р. 1–16.

DOI: 10.1145/1132973.1132974 URL:

http://dl.acm.org/citation.cfm?doid=1132973.1132974

4.

Deon A.F., Menyaev Yu.A.

The complete set simulation of stochastic sequences without

repeated and skipped elements // Journal of Universal Computer Science. 2016. Vol. 22. No. 8.

P. 1023–1047. DOI: 10.3217/jucs-022-08-1023

URL:

http://www.jucs.org/jucs_22_8/the_complete_set_simulation

5.

Entacher K.

Bad subsequences of well-known linear congruential pseudorandom number

generators // ACM TOMACS. 1998. Vol. 8. No.1. Р. 61–70. DOI: 10.1145/272991.273009

URL:

http://dl.acm.org/citation.cfm?doid=272991.273009

6.

Leeb H., Wegenkittl S.

Inversive and linear congruential pseudorandom number generators

in empirical tests // ACM TOMACS, 1997. Vol. 7. Р. 272–286. DOI: 10.1145/249204.249208

URL:

http://dl.acm.org/citation.cfm?doid=249204.249208

7.

Park S.K., Miller K.W.

Random number generators: good ones are hard to find // Commu-

nication of the ACM. 1988. Vol. 31. No. 10. Р. 1192–1201. DOI: 10.1145/63039.63042

URL:

http://dl.acm.org/citation.cfm?doid=63039.63042

8.

Optical

clearing in photoacoustic flowcytometry / Yu.A. Menyaev, D.A. Nedosekin,

M. Sarimollaoglu, M.A. Juratli, E.I. Galanzha, V.V. Tuchin, V.P. Zharov // Biomed. Opt. Ex-

press. 2013. Vol. 4. No. 12. Р. 3030–3041. DOI: 10.1364/BOE.4.003030

URL:

https://www.osapublishing.org/boe/abstract.cfm?uri=boe-4-12-3030

9.

Wiese K.C., Hendriks А., Deschenes А., Youssef В.В.

The impact of pseudorandom number

quality on P-RnaPredict, a parallel genetic algorithm for RNA secondary structure predi-

ction // GECCO ’05. Proc. 7th Annual Conf. on Genetic and Evolutionary Computation. 2005.

Р. 479–480. DOI: 10.1145/1068009.1068089

URL:

http://dl.acm.org/citation.cfm?doid=1068009.1068089

10.

Leonard P., Jackson D.

Efficient evolution of high entropy RNGs using single node genetic

programming // GECCO ’15. Proc. of the 2015 Annual Conf. on Genetic and Evolutionary

Computation. 2015. Р. 1071–1078. DOI: 10.1145/2739480.2754820

URL:

http://dl.acm.org/citation.cfm?doid=2739480.2754820

11.

Niederreiter H.

Some linear and nonlinear methods for pseudorandom number genera-

tion // WSC '95. Proc. of the 27th Conf. on Winter Simulation. 1995. Р. 250–254.

DOI: 10.1145/224401.224611 URL:

http://dl.acm.org/citation.cfm?doid=224401.224611

12.

Entacher K.

Parallel streams of linear random numbers in the spectral test // ACM

TOMACS. 1999. Vol. 9. No.1. Р. 31–44. DOI: 10.1145/301677.301682

URL:

http://dl.acm.org/citation.cfm?doid=301677.301682

13.

Matsumoto M., Nishimura Т.

Mersenne twister: a 623-dimensionnally equidistributed uni-

form pseudorandom number generator // ACM TOMACS. 1998. Vol. 8. No. 1. Р. 3–30.

DOI: 10.1145/272991.272995 URL:

http://dl.acm.org/citation.cfm?doid=272991.272995