Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

Биоинформационная система с классификатором движения лучезапястного сустава…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 6

83

of movement type detection (95%), which proves the possi-

bility of applying the proposed approaches in control systems

for multifunction prostheses

REFERENCES

[1]

Soe Soe Thaw Oo, Gavrilov A.I. Electromyography data-processing system.

Molodezhniy

nauchno-tekhnicheskiy vestnik

[Electronic periodical youth scientific and technical bulletin],

2015, no. 11. Available at:

http://sntbul.bmstu.ru/doc/817650.html

(accessed 07.09.2015)

(in Russ.).

[2]

Zecca M., Micera S., Carrozza M.C., Dairo P. Control of multifunctional prosthetic hands

by processing the electromyographic signal.

Critical reviews in biomedical engineering

, 2002,

no. 30, pp. 459–485.

[3]

Fraiwan L., Awwad M., Mahdawi M., Jamous Sh. Real time virtual prosthetic hand con-

trolled using EMG signals.

1st Middle East Conference on Biomedical Engineering

, 2011,

pp. 225–227. DOI: 10.1109/MECBME.2011.5752106

[4]

Pupkov K.A., Gavrilov A.I., Shakhnazarov G.A. Integration of Control Technologies in

the High Accuracy and Relyability Intelligent Systems.

Vestnik RUDN. Ser. Inzhenernye issle-

dovaniya

[Bulletin of PFUR. Ser. Engineering researches], 2011, no. 4, pp. 60–67 (in Russ.).

[5]

Andrianov D.A., Gavrilov A.I. System development for human biological parameter anal-

ysis using neural net technologies.

Molodezhniy nauchno-tekhnicheskiy vestnik

[Electronic

periodical youth scientific and technical bulletin], 2012, no. 3. Available at: http:/

/sntbul.bmstu.ru/doc/458150.html

(accessed 04.12.2014) (in Russ.).

[6]

Ryait H.S., Arora A.S., Agarwal R. SEMG signal analysis at acupressure points for elbow

movement.

Journal of electromyography and Kinesiology

, 2011, vol. 21, no. 5, pp. 868–876.

DOI: 10.1016/j.jelekin.2011.07.002

[7]

Ahmad S.A., Ishak A.J., Ali S. Classification of surface electromyographic signal using

fuzzy logic for prosthesis control.

IEEE EMBS Conference on biomedical engineering and

science

, 2010, pp. 471–474. DOI: 10.1109/IECBES.2010.5742283

[8]

Shalu George. K., Sivanandan K.S, Mohandas K.P. Speed based EMG classification using

fuzzy logic.

International Review on Computers and Softwares

, 2012, vol. 7, no. 3, pp. 950–958.

[9]

Crawford B., Miller K., Shenoy, Rao R. Real-time classification of electromyographic sig-

nals for robotic control.

Proceeding of AAAI

, 2005, pp. 523–528.

[10]

Suranov

A.Ya

.

LabVIEW.

Spravochnik po funktsiyam [LabVIEW. Function guide]. Mos-

cow, DMK Press Publ., 2007. 536 p.

[11]

Zade L.A. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu prib-

lizhennykh resheniy [Linguistic variable concept and its use for taking approximate solutions].

Moscow, Mir Publ., 1976. 165 p.

[12]

Zade L.A. Osnovy novogo podkhoda k analizu slozhnykh sistem i protsessov prinyatiya

resheniy: Matematika segodnya [Fundamentals of new approach to complex system analysis

and decision making procedure]. Moscow, Znanie Publ., 1974. Pp. 5–49.

Gavrilov A.I.

— Cand. Sci. (Eng.), Assoc. Professor of Automatic Management Systems

Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow,

105005 Russian Federation).