Селективно-ковариационный метод локализации, классификации и отслеживания людей…
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 6
69
background information from the target area. The use of the
proposed feature functions and mask significantly improved
the human classification performance (from 75% when using
basic feature functions to 94.6% accuracy with the proposed
method) while keeping computational complexity moderat
REFERENCES
[1]
Lowe D.G. Distinctive image features from scale-invariant keypoints.
International Jour-
nal of Computer Vision
, 2004, vol. 60, no. 2, pp. 91–110.
DOI: 10.1023/B:VISI.00
00029664.99615.94[2]
Fazli S., Pour H.M., Bouzari H. Particle filter based object tracking with sift and color
feature.
International Conference on Machine Vision
, 2009, pp. 89–93.
DOI: 10.1109/ICMV.2009.47
[3]
Belongie S., Malik J., Puzicha J. Shape matching and object recognition using shape con-
texts.
IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2002, vol. 24, no. 4,
pp. 509–522. DOI: 10.1109/34.993558
[4]
Ioffe S., Forsyth D.A. Probabilistic methods for finding people.
International Journal
of Computer Vision
, 2001, vol. 43, no. 1, pp. 45–68. DOI: 10.1023/A:1011179004708
[5]
Elzein H., Lakshmanan S., Watta P. A motion and shape-based pedestrian detection algo-
rithm.
IEEE Intelligent Vehicles Symposium. Proc
., 2003, pp. 500–504.
DOI: 10.1109/IVS.2003.1212962
[6]
Liu H., Wang L., Sun F. Mean-shift tracking using fuzzy coding histogram.
International
Journal of Fuzzy Systems
, 2014, vol. 16, no. 4, pp. 457–467.
[7]
Comaniciu D., Ramesh V., Meer P. Kernel-based object tracking.
IEEE Transactions on
Pattern Analysis and Machine Intelligence
, 2003, vol. 25, no. 5, pp. 564–577.
DOI: 10.1109/TPAMI.2003.1195991
[8]
Perez P., Hue C., Vermaak J., Gangnet M. Color-based probabilistic tracking.
European
Conference on Computer Vision
, 2002, pp. 661–675.
[9]
Tuzel O., Porikli F., Meer P. Region covariance: A fast descriptor for detection and classi-
fication.
European Conference on Computer Vision
, 2006, pp. 589–600.
[10]
Porikli F., Tuzel O., Meer P. Covariance tracking using model update based on Lie
algebra
. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, 2006,
vol. 1, pp. 728–735. DOI: 10.1109/CVPR.2006.94
[11] Wu Y., Cheng J., Wang J., Lu H. Real-time visual tracking via incremental covariance
tensor learning.
Proceedings of IEEE International Conference on Computer Vision
, 2009,
pp. 1631–1638. DOI: 10.1109/ICCV.2009.5459369
[12] Wu Y., Wang J., Lu H. Robust Bayesian tracking on Riemannian manifolds via frag-
ments-based representation.
Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing
, 2009, pp. 765–768. DOI: 10.1109/ICASSP.2009.4959696
[13]
Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction.
Proceedings of International Conference on Pattern Recognition
, 2004, vol. 2, pp. 28–31.
DOI: 10.1109/ICPR.2004.1333992