Previous Page  16 / 17 Next Page
Information
Show Menu
Previous Page 16 / 17 Next Page
Page Background

Селективно-ковариационный метод локализации, классификации и отслеживания людей…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 6

69

background information from the target area. The use of the

proposed feature functions and mask significantly improved

the human classification performance (from 75% when using

basic feature functions to 94.6% accuracy with the proposed

method) while keeping computational complexity moderat

REFERENCES

[1]

Lowe D.G. Distinctive image features from scale-invariant keypoints.

International Jour-

nal of Computer Vision

, 2004, vol. 60, no. 2, pp. 91–110.

DOI: 10.1023/B:VISI.00

00029664.99615.94

[2]

Fazli S., Pour H.M., Bouzari H. Particle filter based object tracking with sift and color

feature.

International Conference on Machine Vision

, 2009, pp. 89–93.

DOI: 10.1109/ICMV.2009.47

[3]

Belongie S., Malik J., Puzicha J. Shape matching and object recognition using shape con-

texts.

IEEE Transactions on Pattern Analysis and Machine Intelligence

, 2002, vol. 24, no. 4,

pp. 509–522. DOI: 10.1109/34.993558

[4]

Ioffe S., Forsyth D.A. Probabilistic methods for finding people.

International Journal

of Computer Vision

, 2001, vol. 43, no. 1, pp. 45–68. DOI: 10.1023/A:1011179004708

[5]

Elzein H., Lakshmanan S., Watta P. A motion and shape-based pedestrian detection algo-

rithm.

IEEE Intelligent Vehicles Symposium. Proc

., 2003, pp. 500–504.

DOI: 10.1109/IVS.2003.1212962

[6]

Liu H., Wang L., Sun F. Mean-shift tracking using fuzzy coding histogram.

International

Journal of Fuzzy Systems

, 2014, vol. 16, no. 4, pp. 457–467.

[7]

Comaniciu D., Ramesh V., Meer P. Kernel-based object tracking.

IEEE Transactions on

Pattern Analysis and Machine Intelligence

, 2003, vol. 25, no. 5, pp. 564–577.

DOI: 10.1109/TPAMI.2003.1195991

[8]

Perez P., Hue C., Vermaak J., Gangnet M. Color-based probabilistic tracking.

European

Conference on Computer Vision

, 2002, pp. 661–675.

[9]

Tuzel O., Porikli F., Meer P. Region covariance: A fast descriptor for detection and classi-

fication.

European Conference on Computer Vision

, 2006, pp. 589–600.

[10]

Porikli F., Tuzel O., Meer P. Covariance tracking using model update based on Lie

algebra

. IEEE Computer Society Conference on Computer Vision and Pattern Recognition

, 2006,

vol. 1, pp. 728–735. DOI: 10.1109/CVPR.2006.94

[11] Wu Y., Cheng J., Wang J., Lu H. Real-time visual tracking via incremental covariance

tensor learning.

Proceedings of IEEE International Conference on Computer Vision

, 2009,

pp. 1631–1638. DOI: 10.1109/ICCV.2009.5459369

[12] Wu Y., Wang J., Lu H. Robust Bayesian tracking on Riemannian manifolds via frag-

ments-based representation.

Proceedings of IEEE International Conference on Acoustics, Speech

and Signal Processing

, 2009, pp. 765–768. DOI: 10.1109/ICASSP.2009.4959696

[13]

Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction.

Proceedings of International Conference on Pattern Recognition

, 2004, vol. 2, pp. 28–31.

DOI: 10.1109/ICPR.2004.1333992