|

Determining Causality Criteria for Estimating Increases in Measurement Uncertainty as a Result of Solving Systems of Equations

Authors: Savenkov A.P. Published: 16.02.2019
Published in issue: #1(124)/2019  
DOI: 10.18698/0236-3933-2019-1-20-34

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Metrology and Measurement Assurance  
Keywords: measurement, criterion, causality, surface tension, error, system of equations

We used the methods of computing indirect measurement uncertainties to derive causality criteria for systems of linear algebraic equations. The methods were employed to analyse the accuracy of physical quantity measurement techniques. The paper considers the methodology behind criterion derivation using a system of two linear algebraic equations as an example. We present the results of relying on these criteria to analyse non-contact aerodynamic techniques of simultaneously measureing density and surface tension in liquids

The study was supported by the Ministry of Education and Science of the Russian Federation as part of agreement no. 14.577.21.0214 (unique project identifier RFMEFI57716X0214)

References

[1] RMG 29−2013. Gosudarstvennaya sistema obespecheniya edinstva izmereniy. Metrologiya. Osnovnye terminy i opredeleniya [RMG 29−2013. State system for ensuring the uniformity of measurements. Metrology. Basic terms and definitions]. Moscow, Standartinform Publ., 2014 (in Russ.).

[2] Kalitkin N.N., Yukhno L.F., Kuzmina L.V. Quantitative criterion of conditioning for systems of linear algebraic equations. Math. Models Comput. Simul., 2011, vol. 3, no. 5, pp. 541−556. DOI: 10.1134/S2070048211050097

[3] Mordasov D.M. Pneumodynamic non-contact control of liquid substances density. Vestnik TGTU [Transactions of the TSTU], 2004, vol. 10, no. 3, pp. 666–674 (in Russ.).

[4] Galizdra V.I., Mishchenko S.V., Mordasov D.M., et al. Control on surface tension of liquid materials in industrial conditions. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 1997, vol. 63, no. 5, pp. 28–30 (in Russ.).

[5] Bіlinskiy Y.Y., Gorodetska O.S. Optiko-elektronniy vimіryuvach poverkhnevogo natyagu rіdin [Optoelectronic device for measuring surface tension of liquid]. Patent 71259 UA. Appl. 15.12.2003, publ. 15.11.2004.

[6] Backes P.G. Paint viscosity monitoring system and method. Patent 5024080 US. Appl. 03.04.1990, publ. 18.06.1991.

[7] Suslin M.A., Kuzmenko O.Yu., Dmitriev D.A. Sposob opredeleniya vyazkosti zhidkikh sred i ustroystvo dlya ego realizatsii [Method for defining liquid viscosity and device for its implementation]. Patent 2180438 RF. Appl. 07.07.1999, publ. 10.03.2002 (in Russ.).

[8] Grebennikova N.M., Mordasov M.M. Pneumatic method of control over liquid viscosity. Vestnik TGTU [Transactions of the TSTU], 2005, vol. 11, no. 1, pp. 81–87 (in Russ.).

[9] Nowinski S. A device for measuring physical properties of liquids. Patent 2192987 GB. Appl. 21.07.1987, publ. 27.01.1988.

[10] Dmitriev D.A., Mordasov M.M., Muromtsev Yu.L. Ustroystvo dlya izmereniya fiziko-khimicheskikh svoystv zhidkosti [Device for measurement of physical-chemical properties of liquid]. Patent 1824538 SSSR. Appl. 03.06.1991, publ. 30.06.1993 (in Russ.).

[11] Filatov I.S., Brusentsov Yu.A., Mordasov M.M. Ustroystvo dlya izmereniya poverkhnostnogo natyazheniya [Device for measurement of surface tension]. Patent 2156968 RF. Appl. 06.04.1999, publ. 27.09.2000 (in Russ.).

[12] Galizdra V.I., Mordasov M.M. Aerohydrodynamic nondestructive measuring of physicomechanical parameters of fluids. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 2005, vol. 71, no. 5, pp. 34–38.

[13] Mordasov M.M., Savenkov A.P., Chechetov K.E. Method for analyzing the gas jet impinging on a liquid surface. Tech. Phys., 2016, vol. 61, iss. 5, pp. 659–668. DOI: 10.1134/S1063784216050170

[14] Mordasov M.M., Savenkov A.P., Chechetov K.E. On refinement of calculation dependences of the force action of a turbulent gas jet. Tech. Phys., 2015, vol. 60, iss. 10, pp. 1556–1559. DOI: 10.1134/S1063784215100229

[15] Mordasov M.M., Savenkov A.P. Measurement of geometric parameters of interfaces in gas–liquid systems. Meas. Tech., 2015, vol. 58, iss. 7, pp. 796–799. DOI: 10.1007/s11018-015-0796-x