|

Kinematic Description of Humanoid Robots using Method of Block Matrices

Authors: Leskov A.G., Bazhinova K.V., Seliverstova E.V. Published: 07.12.2018
Published in issue: #6(123)/2018  
DOI: 10.18698/0236-3933-2018-6-102-111

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Information-Measuring and Control Systems  
Keywords: anthropomorphic robot, branched kinematic chain, block matrix, kinematic tasks

The article is dedicated to kinematic description of complex humanoid robots designed for carrying out multiple tasks that people face during their regular working process, along with tasks connected with dangerous conditions (work in the outer space, dealing with hazardous objects). The method of mathematical description of those complex machines via mathematical apparatus of block matrices was suggested. The approach allows us to describe complex robots via developing kinematical equations in a more compact form. The process of block matrices' forming follows evident rules, which makes the method a convenient tool for developing the computer programs for calculations. To illustrate the practical application of the approach, mathematical apparatus of block matrices was used in order to describe the kinematics of humanoid robot-astronaut moving in conditions of zero gravity being attached to stationary basis via multilink umbilical cable

References

[1] Guizzo E. How Robonaut 2 will help astronauts in space. IEEE Spectrum: website. Available at: https://spectrum.ieee.org/automaton/robotics/humanoids/how-robonaut-2-will-help-astronauts-in-space (accessed: 10.03.2018).

[2] Chelovekopodobnyy robot-android SAR-400: website. Available at: http://www.robotblog.ru (accessed: 10.03.2018).

[3] Salisbury J., Roth B. Kinematic and force analysis of articulated mechanical hands. J. Mech., Trans., Autom., 1983, vol. 105, no. 1, pp. 35–41. DOI: 10.1115/1.3267342

[4] Fu K.S., González R.C., Lee C.S.G. Robotics: control, sensing, vision, and intelligence. McGraw-Hill, 1987. 580 p.

[5] Zenkevich S.L., Yushchenko A.S. Upravlenie robotami. Osnovy upravleniya manipulyatsionnymi robotami [Robot control. Fundamentals of manipulating robot control]. Moscow, Bauman MSTU Publ., 2000. 400 p.

[6] Kovalchuk A.K., Semenov S.E., Kuznetsov A.K., et al. Choice of the kinematic structure and study on dynamics of treelike actuating mechanism of tripod robot. Inzhenernyy vestnik [Engi-neering Bulletin], 2013, no. 10.

[7] Leskov A.G., Medvedev V.S. Dynamics analysis and motion control synthesis of manipulating robot executives. Izv. AN SSSR. Tekhnicheskaya kibernetika, 1974, no. 6, pp. 80–88 (in Russ.).

[8] Leskov A.G., Bazhinova K.V., Moroshkin S.D., Feoktistova E.V. Modeling of robotic arms kinematics by means of block matrixes. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 9 (in Russ.). DOI: 10.18698/2308-6033-2013-9-954

[9] Leskov A.G., Bazhinova K.V., Seliverstova E.V. Kinematika i dinamika ispolnitelnykh mekhanizmov manipulyatsionnykh robotov [Kinematics and dynamics of manipulating robot actuators]. Moscow, Bauman MSTU Publ., 2017. 104 p.

[10] Medvedev V.S., Leskov A.G., Yushchenko A.S. Sistemy upravleniya manipulyatsionnykh robotov [Control systems of manipulating robots]. Moscow, Nauka Publ., 1978. 416 p.

[11] Leskov A.G., Yushchenko A.S. Modelirovanie i analiz robototekhnicheskikh system [Simulation and analysis of robotic systems]. Moscow, Mashinostroenie Publ., 1992. 80 p.