17.
Holzapfel A.
,
Stylianou Y.
Musical genre classification using nonnegative matrix
factorization-based features // IEEE Transactions on Audio, Speech and Language
Processing. 2008. Vol. 16. P. 424–434.
18.
Music
genre recognition using spectrograms / Y.M.G. Costa et al. // 18th International
Conference on Systems, Signals and Image Processing. 2011. P. 1–4.
19.
IICBU 2008
— A proposed benchmark suite for biological image analysis / L. Shamir
et al. // Source Code for Biology and Medicine. 2008. Vol. 46. P. 943–947.
20.
Shamir L.
Automatic morphological classification of galaxy images // Monthly
Notices of the Royal Astronomical Society. 2009. Vol. 399. P. 1367–1372.
21.
Shamir L.
Computer analysis reveals similarities between the artistic styles of Van
Gogh and Pollock // Leonardo. 2012. Vol. 45. P. 149–154.
22.
Lim J.S.
Two-Dimensional signal and image processing // Prentice Hall. 1990. P. 42–
45.
23.
Gabor D.
Theory of communication // Journal of IEEE. 1946. Vol. 93. P. 429–457.
24.
Gregorescu C.
,
Petkov N.
,
Kruizinga P.
Comparison of texture features based on
Gabor filters // IEEE Transactions on Image Processing. 2002. Vol. 11. P. 1160–
1167.
25.
Hadjidementriou E.
,
Grossberg M.
,
Nayar S.
Spatial information in multiresolution
histograms// IEEE Conference on Computer Vision and Pattern Recognition. 2001.
Vol. 1. P. 702.
26.
Prewitt J.M.
Object enhancement and extraction. Picture processing and
psychopictoris // Academic Press. 1970. P. 75–149.
REFERENCES
[1] Tzanetakis G., Cook P. Musical genre classification of audio signals.
IEEE
Transactions on Speech and Audio Processing
, 2002, vol. 10, pp. 293–302.
[2] Guo G., Li S.Z. Content-based audio classification and retrieval by support vector
machines.
IEEE Transactions on Neural Networks
, 2003, vol. 14, pp. 209–215.
[3] Li T., Ogihara M., Li Q. A comparative study on content-based music genre
classification.
SIGIR 03
, 2003, pp. 282–289.
[4] Bagci U., Erzin E. Automatic Classification of Musical Genres Using Inter-Genre
Similarity.
IEEE Signal Processing Letters
, 2007, vol. 14, pp. 521–524.
[5] Yang Y.H. et al. Toward multi-modal music emotion classification.
Proceedings of
the 9th Pacific Rim Conference on Multimedia
:
Advances in Multimedia Information
Processing
, 2008, pp. 70–79.
[6] Zlatintsi A., Maragos P. Multiscale fractal analysis of musical instrument signals
with application to recognition.
IEEE Transactions on Audio, Speech and Language
Processing
, 2013, vol. 21, pp. 737–748.
[7] McFee B., Barrington L., Lanckriet G.R.G. Learning content similarity for music
recommendation.
IEEE Transactions on Audio, Speech and Language Processing
,
2012, vol. 20, pp. 2207–2218.
[8] Serra Y. et al. Predictability of music descriptor time series and its application to
cover song detection.
IEEE Transactions on Audio, Speech and Language Processing
,
2012, vol. 20, pp. 514–525.
[9] Manders A.J., Simpson D.M., Bell S.L. Objective prediction of the sound quality
of music processed by an adaptive feedback canceller.
IEEE Transactions on Audio,
Speech and Language Processing
, 2012, vol. 20, pp. 1734–1745.
[10] Downie D. The music information retrieval evaluation exchange (2005–2007):
A window into music information retrieval research.
Acoustical Science and
Technology
, 2008, vol. 29, pp. 247–255.
[11] Casey M. et al. Content-based music information retrieval: Current directions and
future challenges.
Proceedings of the IEEE
, 2008, vol. 96, pp. 668–695.
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. “Приборостроение”. 2015. № 3 137