Background Image
Previous Page  11 / 13 Next Page
Information
Show Menu
Previous Page 11 / 13 Next Page
Page Background

17.

Holzapfel A.

,

Stylianou Y.

Musical genre classification using nonnegative matrix

factorization-based features // IEEE Transactions on Audio, Speech and Language

Processing. 2008. Vol. 16. P. 424–434.

18.

Music

genre recognition using spectrograms / Y.M.G. Costa et al. // 18th International

Conference on Systems, Signals and Image Processing. 2011. P. 1–4.

19.

IICBU 2008

— A proposed benchmark suite for biological image analysis / L. Shamir

et al. // Source Code for Biology and Medicine. 2008. Vol. 46. P. 943–947.

20.

Shamir L.

Automatic morphological classification of galaxy images // Monthly

Notices of the Royal Astronomical Society. 2009. Vol. 399. P. 1367–1372.

21.

Shamir L.

Computer analysis reveals similarities between the artistic styles of Van

Gogh and Pollock // Leonardo. 2012. Vol. 45. P. 149–154.

22.

Lim J.S.

Two-Dimensional signal and image processing // Prentice Hall. 1990. P. 42–

45.

23.

Gabor D.

Theory of communication // Journal of IEEE. 1946. Vol. 93. P. 429–457.

24.

Gregorescu C.

,

Petkov N.

,

Kruizinga P.

Comparison of texture features based on

Gabor filters // IEEE Transactions on Image Processing. 2002. Vol. 11. P. 1160–

1167.

25.

Hadjidementriou E.

,

Grossberg M.

,

Nayar S.

Spatial information in multiresolution

histograms// IEEE Conference on Computer Vision and Pattern Recognition. 2001.

Vol. 1. P. 702.

26.

Prewitt J.M.

Object enhancement and extraction. Picture processing and

psychopictoris // Academic Press. 1970. P. 75–149.

REFERENCES

[1] Tzanetakis G., Cook P. Musical genre classification of audio signals.

IEEE

Transactions on Speech and Audio Processing

, 2002, vol. 10, pp. 293–302.

[2] Guo G., Li S.Z. Content-based audio classification and retrieval by support vector

machines.

IEEE Transactions on Neural Networks

, 2003, vol. 14, pp. 209–215.

[3] Li T., Ogihara M., Li Q. A comparative study on content-based music genre

classification.

SIGIR 03

, 2003, pp. 282–289.

[4] Bagci U., Erzin E. Automatic Classification of Musical Genres Using Inter-Genre

Similarity.

IEEE Signal Processing Letters

, 2007, vol. 14, pp. 521–524.

[5] Yang Y.H. et al. Toward multi-modal music emotion classification.

Proceedings of

the 9th Pacific Rim Conference on Multimedia

:

Advances in Multimedia Information

Processing

, 2008, pp. 70–79.

[6] Zlatintsi A., Maragos P. Multiscale fractal analysis of musical instrument signals

with application to recognition.

IEEE Transactions on Audio, Speech and Language

Processing

, 2013, vol. 21, pp. 737–748.

[7] McFee B., Barrington L., Lanckriet G.R.G. Learning content similarity for music

recommendation.

IEEE Transactions on Audio, Speech and Language Processing

,

2012, vol. 20, pp. 2207–2218.

[8] Serra Y. et al. Predictability of music descriptor time series and its application to

cover song detection.

IEEE Transactions on Audio, Speech and Language Processing

,

2012, vol. 20, pp. 514–525.

[9] Manders A.J., Simpson D.M., Bell S.L. Objective prediction of the sound quality

of music processed by an adaptive feedback canceller.

IEEE Transactions on Audio,

Speech and Language Processing

, 2012, vol. 20, pp. 1734–1745.

[10] Downie D. The music information retrieval evaluation exchange (2005–2007):

A window into music information retrieval research.

Acoustical Science and

Technology

, 2008, vol. 29, pp. 247–255.

[11] Casey M. et al. Content-based music information retrieval: Current directions and

future challenges.

Proceedings of the IEEE

, 2008, vol. 96, pp. 668–695.

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. “Приборостроение”. 2015. № 3 137