[4] Zhi-Qiang C., Wen-Li C. Effects of NaCl on photosynthesis in arabidopsis
and thellungiella leaves based on the fluorescence spectra, the fast chlorophyll
fluorescence induction dynamics analysis and the delayed fluorescence technique.
Proc. of SPIE
, 2010, vol. 7568, pp. 756822-1-756822-8. DOI: 10.1117/12.841257
[5] Saito Y., Takahashi K., Nomura E., Mineuchi K., Kawahara T.D., Nomura A.,
Kobayashi S., Ishi H. Visualization of laser-induced fluorescence of plants influenced
by environmental stress with a microfluorescence imaging system and a fluorescence
imaging lidar system.
Proc. of SPIE
, 1997, vol. 3059, pp. 190–198. DOI:
10.1117/12.277614
[6] Hristov H.A., Borisova E.G., Avramov L.A., Kolev I.N. Applications of laser-
induced fluorescence for remote sensing.
Proc. of SPIE, 11th Int. School on Quantum
Electronics: Laser Physics and Applications
, 2001, vol. 4397, pp. 496–500. DOI:
10.1117/12.425192
[7] Lee K.J., Park Y., Bunkin A., Nunes R., Pershin S., Voliak K. Helicopter-based lidar
system for monitoring the upper ocean and terrain surface.
Appl. Opt.
, 2002, vol. 41,
no. 3, pp. 401–406. DOI: 10.1364/AO.41.000401
[8] Corp L.A., McMurtrey J.E., Middleton E.M., Mulchi C.L., Chappelle E.W.,
Daughtry C.S.T. Fluorescence sensing systems: In vivo detection of biophysical
variations in field corn due to nitrogen supply.
Remote Sensing of Environment
,
2003, vol. 86, pp. 470-479. DOI: 10.1016/S0034-4257(03)00125-1
[9] Grishaev M.V., Zuev V.V., Kharchenko O.V. Fluorescent channel of the Siberian
Lidar Station.
Proc. of SPIE
, 2006, vol. 6580, pp. 65800U-1-65800U-6.
DOI:10.1117/12.724940
[10] Matvienko G., Timofeev V., Grishin A., Fateyeva N. Fluorescence lidar method
for remote monitoring of effects on vegetation.
Proc. of SPIE
, 2006, vol. 6367,
pp. 63670F-1-63670F-8. DOI: 10.1117/12.689612
[11] Zavoruev V.V., Zavorueva E.N. Fluorescence of poplar leaves, growing near the
road.
Opt. Atmos. Okeana
[Atmos. Ocean Opt.], 2011, vol. 24, no. 5, pp. 437–440
(in Russ.).
[12] Belasque J., Gasparoto M.C.G., Marcassa L.G. Detection of mecanical and disease
stresses in citrus plants by fluorescence spectroscopy.
Appl. Opt.
, 2008, vol. 47,
no. 11, pp. 1922–1926. DOI:
dx.doi.org/10.1364/AO.47.001922[13] Gouveia-Neto A.S., Silva E.A., Oliveira R.A., Cunha P.C., Costa E.B., Cˆamara T.J.R,
Willadino L.G. Water deficit and salt stress diagnosis through LED induced
chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel.
Proc.
of SPIE
, 2011, vol. 7902. pp. 79020А-1-79020А-10. DOI:10.1117/12.872991
[14] Maurya R., Prasad S.M., Gopal R. LIF technique offers the potential for the detection
of cadmium-induced alteration in photosynthetic activities of Zea Mays L.
J. of
Photochemistry and Photobiology C: Photochemistry Reviews
, 2008, vol. 9, pp. 29–
35. DOI: 10.1016/j.jphotochemrev.2008.03.001
[15] Belov M.L., Bullo O.A., Gorodnichev V.A. Laser fluorescence detection method of
plant stress conditions caused by insufficient nutrients or contaminants in soil.
Jelektr.
Nauchno-Tehn. Izd. “Nauka i obrazovanie” MGTU im. N.E. Baumana
[El. Sc.-Tech.
Publ. “Science and Education” of Bauman MSTU], 2012, no. 12 (in Russ.). DOI:
10.7463/1212.0506199
[16] Middleton E., McMurtrey J.E., Entcheva Campbell P.K., Corp L.A., Butchera L.M.,
Chappellea E.W. Optical and fluorescence properties of corn leaves from different
nitrogen regimes.
Proc. of SPIE
, 2003, vol. 4879, pp. 72–83. DOI:10.1117/12.463087
[17] Merzlyak M.N. Pigments, leaf optics and plant state.
Soros. Obr. Zhur. (SOZh)
[Soros
Ed. J.], 1998, no. 4, pp. 19–24 (in Russ.).
[18] Burling K., Hunsche M., Noga G. Use of blue-green and chlorophyll fluorescence
measurements for differentiation between nitrogen deficiency and pathogen infection
in winter wheat.
J. Plant Physiol. (JPP)
, 2011, vol. 168, no. 14, pp. 1641–1648. DOI:
10.1016/j.jplph.2011.03.016
78 ISSN 0236-3933. HERALD of the BMSTU. Series “Instrument Engineering”. 2015. No. 2