described by a system of the Euler dynamic equations:
J
x
dω
x
dt
+ (
J
z
−
J
y
)
ω
y
ω
z
=
M
x
;
J
y
dω
y
dt
+ (
J
x
−
J
z
)
ω
x
ω
z
=
M
y
;
J
z
dω
z
dt
+ (
J
y
−
J
x
)
ω
x
ω
y
=
M
z
,
(4)
where
J
x
, J
y
, J
z
are the main moments of SC inertion;
ω
x
, ω
y
, ω
z
are the
projectors of SC angular velocity at the axis of coordinate systems, rigidly
connected to the craft;
M
x
,
M
y
,
M
z
are external forces moments.
To describe SC movement in the reference coordinates system it is
necessary to know kinematic correlations demonstrating the dependence
of angular velocity projections
ω
x
, ω
y
, ω
z
on the position of a connected
coordinate system relative to the reference one. This dependence is set
up with the help of three Euler angles: roll angle
γ
; yaw angle
ψ
; pitch
angle
ϑ
.
For craft orientation in the orbital coordinates system:
ω
x
= ˙
γ
+ (Ω
−
˙
ϑ
) sin
ψ
;
ω
y
= ˙
ψ
cos
γ
−
(Ω
−
˙
ϑ
) sin
γ
cos
ψ
;
ω
z
=
−
(Ω
−
˙
ϑ
) cos
γ
cos
ψ
−
˙
ψ
sin
γ.
(5)
We differentiate the kinematic equations (5):
˙
ω
x
= ¨
γ
+ ( ˙Ω
−
¨
ϑ
) sin
ψ
+ (Ω
−
˙
ϑ
) ˙
ψ
cos
ψ
;
˙
ω
y
= ¨
ψ
cos
γ
−
˙
ψ
˙
γ
sin
γ
−
( ˙Ω
−
¨
ϑ
) sin
γ
cos
ψ
−
−
(Ω
−
˙
ϑ
)( ˙
γ
cos
γ
cos
ψ
−
˙
ψ
sin
γ
sin
ψ
);
˙
ω
z
=
−
( ˙Ω
−
¨
ϑ
) cos
γ
cos
ψ
+ (Ω
−
˙
ϑ
)( ˙
γ
sin
γ
cos
ψ
+
+ ˙
ψ
cos
γ
sin
ψ
)
−
¨
ψ
sin
γ
−
˙
ψ
˙
γ
cos
γ.
(6)
After the linear approximation the systems (5) and (6) will gain the
following appearance
ω
x
= ˙
γ
+ Ω
ψ
;
ω
y
= ˙
ψ
−
Ω
γ
;
ω
z
= ˙
ϑ
−
Ω;
(7)
˙
ω
x
= ¨
γ
+ Ω ˙
ψ
; ˙
ω
y
= ¨
ψ
−
Ω ˙
γ
; ˙
ω
z
= ¨
ϑ.
(8)
Inserting (7) and (8) into (4) we obtain:
J
x
¨
γ
+ Ω
2
(
J
z
−
J
y
)
γ
+ Ω(
J
x
+
J
y
−
J
z
) ˙
ψ
=
M
x
;
J
y
¨
ψ
+ Ω
2
(
J
z
−
J
x
)
ψ
−
Ω(
J
x
+
J
y
−
J
z
) ˙
γ
=
M
y
;
J
z
¨
ϑ
=
M
z
.
(9)
6
ISSN 0236-3933. HERALD of the BMSTU. Series “Instrument Engineering”. 2014. No. 5