Previous Page  8 / 12 Next Page
Information
Show Menu
Previous Page 8 / 12 Next Page
Page Background

Ю.В. Федотов, О.А. Булло, М.Л. Белов

28

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

2.

Water

deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in

Jatropha curcas L. oil plants for biodisiel / A.S. Gouveia–Neto, E.A. dа Silva, R.A. Oliveira,

P.C. Cunha, E.B. Costa, T.J.R. Câmara, L.G. Willadino // Proc. of SPIE. 2011. Vol. 7902.

Р. 79020А-1–79020А-10. DOI: 10.1117/12.872991

URL:

http://proceedings.spiedigitallibrary.org/

proceeding.aspx?articleid=718967

3.

Лабораторные

и лидарные измерения спектральных характеристик листьев березы в раз-

личные периоды вегетации / А.В. Афонасенко, А.И. Иглакова, Г.Г. Матвиенко,

В.К. Ошлаков, В.Е. Прокопьев // Оптика атмосферы и океана. 2012. Т. 25. № 3. С. 237–243.

4.

Федотов Ю.В., Булло О.А., Белов М.Л., Городничев В.А.

Устойчивость результатов лазерно-

го флуоресцентного метода контроля состояния растений // Оптика атмосферы и океана.

2016. Т. 29. № 1. С. 80–84.

5.

Panneton B., Guillaume S., Roger J.M., Samson G.

Improved discrimination between monocoty-

ledonous and dicotyledonous plants for weed control based on the blue-green region of Ultraviolet-

induced fluorescence spectra // Applied Spectroscopy. 2010. Vol. 64. No. 1. Р. 30–36.

DOI: 10.1366/000370210790572106

URL:

http://journals.sagepub.com/doi/abs/10.1366/000370210790572106

6.

Zhi-qiang C., Wen-li C.

Effects of NaCl on photosynthesis in Arabidopsis and Thellungiella leaves

based on the fluorescence spectra, the fast chlorophyll fluorescence induction dynamics analysis

and the delayed fluorescence technique // Proc. of SPIE. 2010. Vol. 7568. Р. 756822-1–756822-8.

DOI: 10.1117/12.841257

URL:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=780701

7.

Plant

abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in

vivo leaf tissue of biofuel species / A.S. Gouveia–Neto, E.A. da Silva, L.M.H. Silva, E.B. da Costa,

T.J.R. Câmara, L.G. Willadino // Proc. of SPIE. 2010. Vol. 7568. Р. 75680G-1–75680G-8.

DOI: 10.1117/12.839462

URL:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=780574

8.

Grishaev M.V., Sal’nikova N.S.

A Setup for remote recording of the spectrum of laser-induced

fluorescence from crowns of woody plants // Instruments and Experimental Techniques. 2010.

Vol. 53. Nо. 5. P. 746–749. DOI: 10.1134/S0020441210050246

URL:

http://link.springer.com/article/10.1134/S0020441210050246

9.

Laser-induced

fluorescence characteristics of vegetation by a new excitation wavelength /

J. Yanga, W. Gonga, S. Shia, L. Dua, J. Suna, S. Songe // Spectroscopy Letters. 2016. Vol. 49. Nо. 4.

P. 263–267. DOI: 10.1080/00387010.2016.1138311

URL:

http://www.tandfonline.com/doi/abs/10.1080/00387010.2016.1138311

10.

Hedimbi M., Singh S., Kent A.

Laser induced fluorescence study on the growth of maize

plants // Natural Science. 2012. Vol. 4. Nо. 6. P. 395–401. DOI: 10.4236/ns.2012.46054

URL:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19977

11.

Saito K.

Plant and vegetation monitoring using laser-induced fluorescence spectroscopy //

Industrial Applications of Laser Remote Sensing. 2012. P. 99–114.

12.

Pandey J.K., Gopal R.

Laser-induced chlorophyll fluorescence and reflectance spectroscopy of

cadmium treated Triticum aestivum L. plants // Spectroscopy. 2011. Vol. 26. Nо. 2. P. 129–139.

DOI: 10.3233/SPE-2011-0530

URL:

https://www.hindawi.com/journals/jspec/2011/640232/abs

13.

Gopal R., Pandey J.K.

Laser-induced chlorophyll fluorescence spectra of Cajanus cajan L. plant

growing under cadmium stress // Proc. International Symposium on Molecular Spectroscopy.

June 21–25, 2010, Ohio State University, Columbus, OH., USA.