Previous Page  10 / 12 Next Page
Information
Show Menu
Previous Page 10 / 12 Next Page
Page Background

Ю.В. Федотов, О.А. Булло, М.Л. Белов

30

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

conditions caused by the presence of various pollutants in

the soil (salt, iron and copper sulfate), insufficient or

excessive watering, mechanical damage to the leaves and

the plant root system. We carried out a comparative

analysis of options for selecting the spectral ranges of

registering laser-induced fluorescence plant emission.

Findings of the research show that for the plant state

monitoring tasks, spectral bands with central wavelengths

of 685 and 740 nm are the most efficient (in terms of

reliability of correct detection of stress state) bands of

fluorescence radiation detection

REFERENCES

[1] Panneton B., Guillaume S., Roger J.M., Samson G. Discrimination of corn from monocoty-

ledonous weeds with ultraviolet (UV) induced fluorescence.

Applied Spectroscopy

, 2011,

vol. 65, no. 1, pp. 10–19. DOI: 10.1366/10-06100

Available at:

http://journals.sagepub.com/doi/abs/10.1366/10-06100

[2] Gouveia-Neto A.S., Silva Jr. E.A., Oliveira R.A., Cunha P.C., Costa E.B., Câmara T.J.R.,

Willadino L.G. Water deficit and salt stress diagnosis through LED induced chlorophyll fluo-

rescence analysis in Jatropha curcas L. oil plants for biodisiel.

Proc. of SPIE

. 2011, vol. 7902,

pp. 79020A-1–79020A-10. DOI: 10.1117/12.872991

Available at:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=

718967

[3] Afonasenko A.V., Iglakova A.I., Matvienko G.G., Oshlakov V.K., Prokop'yev V.E. Labora-

tory and lidar measurements of birch leaves spectral characteristics in different periods of

vegetation.

Optika atmosfery i okeana

, 2012, vol. 25, no. 3, pp. 237–243 (in Russ.).

[4] Fedotov Yu.V., Bullo O.A., Belov M.L., Gorodnichev V.A. Stability of results of plant state

detection by laser fluorescence method.

Optika atmosfery i okeana

, 2016, vol. 29, no. 1,

pp. 80–84 (in Russ.).

[5] Panneton B., Guillaume S., Roger J.M., Samson G. Improved discrimination between

monocotyledonous and dicotyledonous plants for weed control based on the blue-green re-

gion of ultraviolet-induced fluorescence spectra.

Applied Spectroscopy

, 2010, vol. 64, no. 1,

pp. 30–36. DOI: 10.1366/000370210790572106

Available at:

http://journals.sagepub.com/doi/abs/10.1366/000370210790572106

[6] Zhi-qiang C., Wen-li C. Effects of NaCl on photosynthesis in Arabidopsis and Thellungiel-

la leaves based on the fluorescence spectra, the fast chlorophyll fluorescence induction

dynamics analysis and the delayed fluorescence technique.

Proc. of SPIE

. 2010, vol. 7568,

pp. 756822-1–756822-8. DOI: 10.1117/12.841257

Available at:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?Articleid

=780701

[7] Gouveia-Neto A.S., Silva Jr. E.A., Costa Jr. E.B., Silva L.M.H., Câmara T.J.R., Willadino L.G.

Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo

leaf tissue of biofuel species.

Proc. of SPIE

. 2010, vol. 7568, pp. 75680G-1–75680G-8.

DOI: 10.1117/12.839462

Available at:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid

=780574