The spacecraft angular velocity estimation in the orbital stabilization mode by the results of the local vertical sensor measurements
Authors: Zubov N.E., Mikrin E.A., Oleynik A.S., Ryabchenko V.N., Efanov D.E. | Published: 04.10.2014 |
Published in issue: #5(98)/2014 | |
DOI: | |
Category: Control Systems | |
Keywords: spacecraft, exact pole placement method, local vertical sensor, angular velocity, estimation algorithm |
Implementation of the orbital orientation mode is based on the use of sensor equipment, measuring the spacecraft position angles relative to the coordinates system and the angular velocity of spacecraft rotation relative to inertial space. In case the latter fails the orbital stabilization implementation is impossible. Consequently, it is required to make on-board estimation algorithms for a angular velocity vector in real-time by the results of measurements using an angular position sensor. The exact pole placement method was used to obtain the analytic solution of the estimation algorithm synthesis for angular velocity of the spacecraft rotation in the orbital stabilization mode by the results of local vertical sensor measuring. The mathematical simulation results are presented and the possibility of the developed algorithm implementation is assessed in real-time. The simulation results confirm high efficiency of the algorithm operation.
References
[1] Zubov N.E. Algorithmic implementation of an automatic regime for orbital orientation of a spacecraft. Izv. Akad. Nauk SSSR, Tech. Cyber. [Sov. J. Comp. and Sys. Sci., vol. 28, iss. 6, pp. 143-151], 1990, no. 2, pp. 193-202 (in Russ.).
[2] Zubov N.E., Mikrin E.A., Misriknanov M.Sh., Ryabchenko V.N. Synthesis of decoupling laws for attitude stabilization of a spacecraft. Izv. RAN. Teoriya i sistemy upravleniya [J. Comput. Syst. Sci. Int., vol. 51, pp. 80-96], 2012, no. 1, pp. 92-108 (in Russ.).
[3] Zubov N.E., Lapin A.V., Mikrin E.A. Orbital attitude stabilization of a spacecraft. Kosm. Tekh. i tekhnol. [Space engineering & technology], 2013, no. 3, pp. 74-81 (in Russ.).
[4] Ivandikov Ya. M. Opticheskie pribory navedeniya i orientatsii kosmicheskikh apparatov [Optical devices for guidance and orientation of a spacecraft]. Moscow, Mashinostroenie Publ., 1979. 208 p.
[5] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., Timakov S.N. The use of the exact pole placement algorithm for observation and identification tasks of the spacecraft motion control. Izv. RAN. Teoriya i sistemy upravleniya [J. Comput. Syst. Sci. Int.], 2013, no. 1, pp. 135-151 (in Russ.).
[6] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Modification of the exact pole placement method and its application for the spacecraft motion control. Izv. RAN. Teoriya i sistemy upravleniya [J. Comput. Syst. Sci. Int., vol. 52, iss. 2, pp. 279-292], 2013, no. 2, pp. 118-132 (in Russ.).
[7] Zubov N.E., Mikrin E.A., Oleynik A.S. Estimation for the angular velocity of pointing direction by the process of measurements the distance and the velocity of longitudinal motion in spacecrafts rendezvous process. Jelektr. Nauchno-Teh. Izd. "Inzhenernyj zhurnal: nauka i innovacii" MGTU im. N.E. Baumana [El. Sci.-Tech. Publ. "Eng. J.: "Science and Innovation" of Bauman MSTU], 2013, iss. 10. Available at: http://engjournal.ru/articles/1079/1079.pdf (accessed 22.12.2013).