|

Multi-Criteria Parametric Optimization of the TripleChannel Cross-Coupling Stabilizing System of an Aircraft

Authors: Aksenov A.S., Voronov E.M., Lyubavskiy K.K., Sychev S.I. Published: 23.05.2014
Published in issue: #3(96)/2014  
DOI:

 
Category: Control Systems  
Keywords: multi-object and multi-criteria system, stable-effective compromise, reference trajectory, equilibrium-arbitral algorithm, Nash equilibrium, stabilizing system, criterion of efficiency, pattern search

Methods for optimizing control of multi-object and multi-criteria systems on the basis of stable-effective compromise concept are used in multi-criteria task to parametrically optimize the structurally-complex triple-channel stabilizing system of a statically stable aircraft with normal aerodynamic design under conditions of initial structural inconsistence of channels based on cross coupling between channels. The generalized stable-effective algorithm of multi-criteria optimization is formed on the basis of equilibrium-arbitral compromise. A complete set of cross couplings is revealed in the practically useful model of linearized stabilizing system of an anti-ship missile with "perturbed" reference trajectory of flight. Optimal modes of aircraft stabilization are investigated taking into account the stability, performance, static accuracy and control response under exposure to perturbations and with changes in the cross-coupling conditions.

References

[1] Voronov E.M., Melekhina Yu.V., Veselovskaya O.A., Musin E.R. Equilibrium-arbitral multicriterial channel balancing in multivariate regulation and control. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2007, no. 4, pp. 99-119 (in Russ.).

[2] Voronov E.M. Metody optimizatsii upravleniya mnogoob’ektnymi mnogokriterial’nymi sistemami na osnove stabil’no-effektivnykh kompromissov [Control optimization methods of multicriterial multiobjective systems based on stably efficient compromises], Moscow, MGTU im. N.E. Baumana Publ., 2001. 576 p.

[3] Kuzovkov N.T. Sistemy stabilizatsii letatel’nykh apparatov [Stabilizing systems of airborne vehicles]. Мoscow, Vysshaya Shkola Publ., 1976. 304 p.

[4] Lebedev A.A., Karabanov V.A. Dinamika sistem upravleniya bespilotnymi letatel’nymi apparatami [Dynamics of control systems of airborne vehicles]. Moscow, Mashinostroenie Publ., 1965. 528 p.

[5] Bodner V.A., Kozlov M.S. Stabilizatsiya letatel’nykh apparatov i avtopiloty [Airborne vehicles stabilization and autopilot systems], Moscow, Oboroniz Publ., 1961. 508 p.

[6] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of automatic regulation systems]. Moscow, Nauka Publ., 1975. 768 p.

[7] Kim D.P. Teoriya avtomaticheskogo upravleniya. T.1. Izd. 2 [Automatic control theory. In 2 volumes. 2nd ed.]. Moscow, Fizmatlit Publ., 2003. 288 p. (vol. 1).

[8] Veselov A.P., Evstifeev V.V., Karabanov V.A. Raschet i proektirovanie sistem stabilizatsii letatel’nykh apparatov [Calculation and design of stabilizing system of airborne vehicle]. Moscow, MVTU Publ., 1979. 22 p. (iss. 5).

[9] Kon’kov V.G., Sivtsov VI. Ustoychivost’ upravlyaemykh tekhnicheskikh system [Stability of controlled engineering system]. Moscow, MGTU im.N.E. Baumana Publ., 1990. 78 p.

[10] Attetkov A.V., Galkin S.V., Zarubin B.C., Krishchenko A.P. Metody optimizatsii [Optimization methods]. Moscow, MGTU im. N.E. Baumana, 2003. 440 p.