On the Issue of the Intense Electron Flow Scattering on Residual Gas Molecules in the O-type Microwave EVD
Authors: Cherchenko D.K., Komarov D.A., Yakushkin E.P. | Published: 02.10.2024 |
Published in issue: #3(148)/2024 | |
DOI: | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Vacuum and Plasma Electronics | |
Keywords: klystron, scattering, micro-wave EVD, mass spectrometry, electron flow |
Abstract
The paper presents solution to the problem of intense focused electron beam scattering on residual gas molecules in the O-type microwave electrovacuum devises (EVD). The solution could be introduced in computation with any set of the system input parameters. The paper provides results of numerical simulation of the electron beam scattering processes for the KU-329B powerful continuous klystron used in the satellite communication systems, as well as results of this device mass-spectrometric study, which analysis makes it possible to determine a set of the computation input parameters. The obtained values of the root-mean-square deviation of the boundary electron were verified by the klystron experimental study on the thermal vacuum treatment and dynamic testing benches. Results of the obtained data analysis revealed causes of the device instability characterized by the effect of the operation modes disruption in dynamic testing. Consequently, the need was identified to introduce a criterion for estimating the pressure level required in the device vacuum volume from the point of view of the electron beam maximum permissible scattering. Compliance with this criterion requirements is important in the powerful devices, where even minimum values of current deposition on the transport channel internal surfaces are unacceptable. This criterion was used to compute the pressure permissible value in the KU-329B device volume. Technology of its thermal vacuum treatment was modernized making it possible to significantly reduce the overall manufacture time
Please cite this article in English as:
Cherchenko D.K., Komarov D.A., Yakushkin E.P. On the issue of the intense electron flow scattering on residual gas molecules in the O-type microwave EVD. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 3 (148), pp. 59--74 (in Russ.). EDN: IZAMCX
References
[1] Glazkov A.A., Saksaganskiy G.L. Vakuum elektrofizicheskikh ustanovok i kompleksov [Vacuum of electrophysical installation and complexes]. Moscow, Energoatomizdat Publ., 1985.
[2] Cherepnin N.V. Sorbtsionnye yavleniya v vakuumnoy tekhnike [Sorption phenomena in vacuum technology]. Moscow, Sovetskoe radio Publ., 1973.
[3] Komarov D.A., Paramonov Yu.N., Sablin V.M., et al. [Peculiarities of pumping of electric vacuum X-band microwave devices]. Vakuumnaya nauka i tekhnika. Mater. XXIX nauch.-tekh. konf. [Vacuum Science and Technique. Proc. XXIX Sc.-Tech. Conf.]. Moscow, Elektrovakuumnye tekhnologii Publ., 2022, pp. 85--88 (in Russ.). EDN: FLAFFN
[4] Reiser M. Theory and design of charged particle beams. New York, Wiley, 2008.
[5] Jackson D. Classical electrodynamics. New York, Wiley, 1962.
[6] Mоller S.P. Beam-residual gas interactions. In: CAS --- CERN accelerator school: Vacuum technology. Geneva, 1999, pp. 155--164. DOI: http://dx.doi.org/10.5170/CERN-1999-005.155
[7] Mohl D. Sources of emittance growth. In: CAS --- CERN accelerator school: Vacuum technology. Geneva, 2006, pp. 245--270. DOI: http://dx.doi.org/10.5170/CERN-2006-002.245
[8] Saksaganskiy G.L. Vakuumnaya tekhnika i tekhnologiya elektrofizicheskogo apparatostroeniya [Vacuum technology and technology of electrophysical apparatus engineering]. Moscow, Zaochnyy institut TsP VNTO priborostroiteley Publ., 1989.
[9] Timiryazev A.K. Kineticheskaya teoriya materii [Kinetic theory of matter]. Moscow, UCHPEDGIZ Publ., 1956.
[10] Chandrasekhar S. Stokhasticheskie problemy v fizike i astronomii [Stochastic, statistical, and hydromagnetic problems in physics and astronomy], Moscow, GIIL Publ., 1947.
[11] Akhiezer A.I., Lyubarskiy G.Ya. O fokusirovke elektronnym potokom v protonnom uskoritele [On focusing by electron flow in proton accelerator]. V kn.: Teoriya i raschet lineynykh uskoriteley [In: Theory and calculation of linear accelerators]. Moscow, GILANT Publ., 1962, pp. 131--146 (in Russ.).
[12] Alyamovskiy I.V. Elektronnye puchki i elektronnye pushki [Electron beams and electron guns]. Moscow, Sovetskoe radio Publ., 1966.
[13] Sveshnikov A.G., Tikhonov A.N. Teoriya funktsiy kompleksnoy peremennoy [Theory of functions of a complex variable]. Moscow, Nauka Publ., 1974.
[14] Guter R.S., Reznikovskiy P.T. Programmirovanie i vychislitelnaya matematika. Vyp. 2 [Programming and computational mathematics. Iss. 2]. Moscow, Nauka Publ., 1971.
[15] Komarov D.A., Yakushkin E.P., Paramonov Yu.N., et al. Superpower X-band klystron with an output pulse power of at least 3 MW: design and experiment. J. Commun. Technol. Electron., 2023, vol. 68, no. 11, pp. 1312--1320. DOI: https://doi.org/10.1134/S1064226923080065
[16] Komarov D.A., Maslennikov S.P., Yakushkin E.P., et al. Influence of external electric circuits on the static and dynamic mode of operation of multipath collectors of powerful klystrons. J. Commun. Technol. Electron., 2020, vol. 65, no. 3, pp. 306--310. DOI: https://doi.org/10.1134/S1064226920030080
[17] Saksaganskiy G.L. Elektrofizicheskie vakuumnye nasosy [Electrophysical vacuum pumps]. Moscow, Energoatomizdat Publ., 1988.
[18] Popov V.F. Magnitorazryadnye nasosy [Magnetic-discharge pumps]. Moscow, Energiya Publ., 1970.
[19] Monchamp P., Andrade-Cetto L., Zhang J.Y., et al. Signal processing methods for mass spectrometry. In: System bioinformatics. London, Artech House Publ., 2007, pp. 101--124.
[20] Kelman V.M., Yavor S.Ya. Elektronnaya optika [Electron optics]. Leningrad, AN SSSR Publ., 1963.