|

Laser Interferometer in Parabolic Surface Monitoring

Authors: Timashova L.N., Kulakova N.N. Published: 19.06.2024
Published in issue: #2(147)/2024  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: interferometer, interference pattern, interference fringe, translucent plane-parallel plate, plane mirror, matrix radiation detector, wave front, laser

Abstract

The paper presents results of theoretical analysis of the interference pattern formation process in a laser interferometer based on the wave theory to determine the parameters affecting illumination distribution in the interference pattern. It presents the interferometer diagram implementing the anaberration points' method to monitor the reflective and lens parabolic surfaces with diameter of 10--80 mm and large relative aperture. The interferometer contains laser illuminator, beam splitter in the form of a translucent plane-parallel plate, plane-parallel plate with the micro-mirror coating in the center (coating diameter 0.5--1 mm), and a reference plane mirror. Diagrams of the interfero-meter to monitor convex and concave parabolic surfaces are provided. Expressions are obtained for radiation and illumination amplitude distribution in the interference pattern, taking into account wave aberration of the monitored surface. A method for measuring the monitored parabolic surface error based on the interference pattern distortion period is presented. The distortion value in the interference pattern image should be not less than the size of the photosensitive element of the selected matrix radiation detector. Formulas are given to calculate the interferometer components' parameters based on the required measurement error and parameters of the matrix radiation detector. An example is provided of calculating the error of the interferometer components and the error of the parabolic surface monitoring. Calculation results showed that the errors in measuring the concave and convex parabolic surfaces shape were σ = λ / 44 and σ = λ / 66

Please cite this article in English as:

Timashova L.N., Kulakova N.N. Laser interferometer in parabolic surface monitoring. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 2 (147), pp. 70--83 (in Russ.). EDN: DSWFSN

References

[1] Krivovyaz L.M., Puryaev D.T., Znamenskaya M.A. Praktika opticheskoy izmeritelnoy laboratorii [Practice of optical measuring laboratory]. Moscow, Mashinostroenie Publ., 2004.

[2] Kreopalova G.V., Puryaev D.T. Issledovanie i kontrol opticheskikh system [Research and control on optical system]. Moscow, Mashinostroenie Publ., 1978.

[3] Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow, Mashinostroenie Publ., 1987.

[4] Malakara D., ed. Optical production control. New York, John Wiley & Sons, 1983.

[5] Andreev A.N., Gavrilov E.V., Ishanin G.G., et al. Opticheskie izmereniya [Optical measurements]. Moscow, Logos Publ., 2008.

[6] Kirillovskiy V.K. Opticheskie izmereniya. Teoriya chuvstvitelnosti opticheskikh izmeritelnykh navodok. Rol opticheskogo izobrazheniya [Optical measurements. Theory of sensitivity of optical measuring leads. The role of the optical image]. St. Petersburg, SU ITMO (TU) Publ., 2003.

[7] Timashova L.N., Kulakova N.N. Interferometer to control wedge angles. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2020, no. 2 (131), pp. 117--129 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2020-2-117-129

[8] Schroder G., Treiber H. Technische Optik. Wurzburg, Vogel-Buchverlag, 2002.

[9] Mishin S.V., Kulakova N.N., Tirasishin A.V. Adaptation of the algorithm for searching the coordinates of the energy centre in the image of an autocollimating point for working with digital autocollimator. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2016, no. 2 (107), pp. 117--124 (in Russ.).DOI: https://doi.org/10.18698/0236-3933-2016-2-117-124

[10] Timashova L.N., Kulakova N.N., Sazonov V.N. Opto-electronic system for measurementof spherical aberration. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2018, no. 6 (123), pp. 112--122 (in Russ.).DOI: https://doi.org/10.18698/0236-3933-2018-6-112-122

[11] Kulakova N.N., Kaledin S.B., Sazonov V.N. Error analysis of IR lens focal length measured by a goniometric method. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2017, no. 4 (115), pp. 17--26 (in Russ.).DOI: https://doi.org/10.18698/0236-3933-2017-4-17-26

[12] Timashova L.N., Kulakova N.N. Analysis of interferometer with micro-mirror on beam splitting cube. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2021, no. 3 (136), pp. 129--143 (in Russ.).DOI: https://doi.org/10.18698/0236-3933-2021-3-129-143

[13] Timashova L.N., Kulakova N.N. Interferometer for monitoring convex hyperbolic surfaces of small diameters. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2022, no. 3 (140), pp. 115--130 (in Russ.).DOI: https://doi.org/10.18698/0236-3933-2022-3-115-130

[14] Mosyagin G.M., Nemtinov V.B., Lebedev E.N. Teoriya optiko-elektronnykh system[Theory of optic-electronic systems]. Moscow, Mashinostroenie Publ., 1990.

[15] Yakushenkov Yu.G. Proektirovanie optiko-elektronnykh priborov [Design of optic-electronic systems]. Moscow, Logos Publ., 2000.

[16] Yakushenkov Yu.G. Teoriya i raschet optiko-elektronnykh priborov [Theory and calculation of optic-electronic systems]. Moscow, Logos Publ., 2004.

[17] Korotaev V.V. Raschet shumovoy pogreshnosti optiko-elektronnykh priborov [Theory of optical systems]. St. Petersburg, NIU ITMO Publ., 2012.

[18] Abdulkadyrov M.A., Druzhin V.V., Lazareva N.L., et al. Interferometer for multi-functional optical testing. Kontenant [Contenant], 2018, no. 2, pp. 50--54 (in Russ.).

[19] Zakaznov N.P., Kiryushin S.I., Kuzichev V.I. Teoriya opticheskikh system [Theory of optical systems]. St. Petersburg, Lan Publ., 2008.

[20] Kulakova N.N., Permyakov I.A., Tyshkunov N.V. Petzval lens with extended spectral range for registering interference patterns in the infrared Fourier spectrometer. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2015, no. 3 (102), pp. 116--126 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2015-3-116-126