|

IR-radiation Pulsed Sources with a Discharge in the Alkali Metal Vapors Mixture

Authors: Gavrish S.V., Loginov V.V. Published: 26.09.2023
Published in issue: #3(144)/2023  
DOI: 10.18698/0236-3933-2023-3-4-17

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: pulsed discharge, cesium, mercury, rubidium, IR-radiation, vapor pressure, thermal conductivity

Abstract

The paper presents results of research aimed at improving the serial pulsed sources of the IR-radiation based on a discharge in the cesium-mercury-xenon vapor mixture. To create the environmentally friendly gas-discharge source and increase the peak radiation strength, it proposes to replace the mercury buffer in a serial lamp with the rubidium vapor. Based on the thermodynamic analysis, necessity of using cesium as the main component in the plasma-forming medium of IR-radiation pulsed sources was proved. It was established that introduction into the cesium discharge of less than the 25 % (wt.) rubidium provided the required cesium vapor pressure and the plasma thermal conductivity. It was shown that the mass of the alloy with cesium played an important role in the discharge transition from unsaturated to the saturated vapors. Comparison results are presented in peak intensity of the studied IR-radiation gas-discharge lamps depending on amplitude and duration of the supply voltages in the repeated pulsed mode. A technique was developed to compare energy efficiency of the discharges under study, and the spectral research was performed confirming advantages of the IR-radiation pulsed source based on the cesium-rubidium-xenon discharge by the serial gas-discharge lamps

Please cite this article in English as:

Gavrish S.V., Loginov V.V. IR-radiation pulsed sources with a discharge in the alkali metal vapors mixture. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2023, no. 3 (144), pp. 4--17 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2023-3-4-17

References

[1] Gavrish S.V., Loginov V.V., Puchnina S.V. Pulsed gas-discharge IR-radiation sources for optical-electronic systems (a review). Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2018, vol. 6, no. 4, pp. 333--348 (in Russ.).

[2] Gavrish S.V., Kobzar A.I. Pulsed gas discharge as a source of optical interference in infra-red region. Elektronnye informatsionnye sistemy [Electronic Information Systems], 2019, no. 2, pp. 43--60 (in Russ.).

[3] Gavrish S.V., Gaydukov E.N., Konstantinov B.A., et al. Discharge infra-red light sources for special applications. Svetotekhnika, 1998, no. 3, pp. 22--24 (in Russ.).

[4] Loginov V.V. Researching of pulse periodic discharge in alkali metals vapors. Prikladnaya fizika [Applied Physics], 2019, no. 4, pp. 24--28 (in Russ.).

[5] Gavrish S.V. Influence of plasma dynamics of a sodium discharge on the radiation spectrum. Prikladnaya fizika [Applied Physics], 2011, no. 3, pp. 67--72 (in Russ.).

[6] Otani K. Pulsed alkali metal vapor discharge lamp with ceramies outer envelope. Patent US 487031. Appl. 14.04.1988, publ. 26.09.1989.

[7] Rokhlin G.N. Razryadnye istochniki sveta [Discharge light sources.]. Moscow, Energoatomizdat Publ., 1991.

[8] Klyucharev A.N., Yanson M.L. Elementarnye protsessy v plazme shchelochnykh metallov [Elementary processes in alkali metal plasma]. Moscow, Energoatomizdat Publ., 1988.

[9] Gavrish S.V. The dynamics of the formation of a plasma channel after the ignition of a discharge in cesium-mercury-xenon pulsed lamps. Prikladnaya fizika [Applied Physics], 2021, no. 5, pp. 25--31 (in Russ.). DOI: https://doi.org/10.51368/1996-0948-2021-5-25-31

[10] Gavrilov S.A., Gavrish S.V., Petrenko N.Yu. Cesium amalgam evaporation thermodynamics in gas discharge devices. Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2018, vol. 6, no. 6, pp. 471--475 (in Russ.).

[11] Petrenko N.Yu. The plasma heat conductivity calculations depending on the constructive parameters discharge devices. OKNTPR [DIARSTP], 2017, no. 3, pp. 59--64 (in Russ.).

[12] Gavrish S.V., Gradov V.M., Terentyev Yu.I. Osobennosti konstruktsii i raboty lamp s sapfirovymi obolochkami. Svetotekhnika, 2008, no. 2, pp. 12--18 (in Russ.).

[13] Gavrish S.V. Cesium amalgam condensation and evaporation processes at gas discharge lamps shutdown and ignition. Prikladnaya fizika [Applied Physics], 2018, no. 6, pp. 84--89 (in Russ.).

[14] Gavrish S.V., Kobzar A.I., Zhmaev V.S., et al. Research of the factors defining the modulation characteristics of gas-discharge IR-sources. Prikladnaya fizika [Applied Physics], 2009, no. 1, pp. 53--59 (in Russ.).

[15] Gavrish S.V., Kobzar A.I., Kugushev D.N., et al. Development of high power modulated Сs-sources of IR-radiation. Prikladnaya fizika [Applied Physics], 2010, no. 2, pp. 85--90.

[16] Gavrish S.V. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps. J. Appl. Mech. Tech. Phy., 2011, vol. 52, no. 6, pp. 924--930. DOI: https://doi.org/10.1134/S0021894411060101