The Influence of the Aperture Stop Fractal Shape of an Optical System on the Illuminance Distribution

Authors: Zavarzin V.I., Kaledin S.B., Yakubovskiy S.V. Published: 28.12.2022
Published in issue: #4(141)/2022  
DOI: 10.18698/0236-3933-2022-4-70-79

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: aperture stop, aperture, point spread function, Fraunhofer diffraction, fractal


In the article the options for the application of aperture shapes with fractal properties in the design of optical systems are considered. Calculations of mathematical models of point spread functions of a diffraction-limited optical system are performed. The diffraction patterns of the light distribution in these systems are presented, and the point spread functions are considered for various shapes of the aperture stop. Analytical expressions are obtained for the light distribution depending on the pupil shape, which can be used to control the process of image formation. The pupil shape, which has the shape of an equilateral triangle, is chosen as the basic one, and the shape of the pupil as a "Koch snowflake" curve is also considered. Using the Fraunhofer integral, the dependences of the distribution of the spectral density of the complex amplitude on the aperture located on an opaque screen are derived in the Fraunhofer approximation and under the condition of illumination by a plane monochromatic wave. Using the relationship with the complex amplitude, the sought-for intensity distribution in the plane of the diffraction pattern is obtained. Taking into account the simplifications adopted in this article, the solution of the Fraunhofer integral is found, by setting the integration limits, depending on: the selected aperture profile, the coordinate system chosen for it, and the position of nodal points in this system

Please cite this article as:

Zavarzin V.I., Kaledin S.B., Yakubovskiy S.V. The influence of the aperture stop fractal shape of an optical system on the illuminance distribution. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2022, no. 4 (141), pp. 70--79. DOI: https://doi.org/10.18698/0236-3933-2022-4-70-79


[1] Grebel H., Jggard D.L., Kim Y. Diffraction by fractally serrated apertures. J. Opt. Soc. Am. A, 1991, vol. 8, no. 1, pp. 20--26. DOI: https://doi.org/10.1364/JOSAA.8.000020

[2] Scepuro N.G., Krasin G.K., Kovalev M.S., et al. Determination of the point spread function of a computer-synthesized lens formed by a phase light modulator. Opt. Spectrosc., 2020, vol. 128, no. 7, pp. 1030--1034. DOI: https://doi.org/10.1134/S0030400X20070231

[3] Kompanets I.N., Andreev A.L. Microdisplays in spatial light modulators. Quantum Electron., 2017, vol. 47, no. 4, pp. 294--302. DOI: https://doi.org/10.1070/QEL16293

[4] King S.V., Doblas A., Patwary N., et al. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy. Appl. Opt., 2015, vol. 54, no. 29, pp. 8587--8595. DOI: https://doi.org/10.1364/ao.54.008587

[5] Kovalev M.S., Krasin G.K., Odinokov S.B., et al. Measurement of wavefront curvature using computer-generated holograms. Opt. Express., 2019, vol. 27, no. 2, pp. 1563--1568. DOI: https://doi.org/10.1364/oe.27.001563

[6] Zurauskas M., Dobbie I.M., Parton R.M., et al. IsoSense: frequency enhanced sensorless adaptive optics through structured illumination. Optica, 2019, vol. 6, no. 3, pp. 370--379. DOI: https://doi.org/10.1364/optica.6.000370

[7] Ruchka P.A., Verenikina N.M., Gritsenko I.V., et al. Hardware/software support for correlation detection in holographic wavefront sensors. Opt. Spectrosc., 2019, vol. 127, no. 4, pp. 618--624. DOI: https://doi.org/10.1134/S0030400X19100230

[8] Goncharov D.S., Zlokazov E.Yu., Petrova E.K., et al. Features of the implementation of holographic invariant correlation filters based on a phase liquid-crystal space-time light modulator. Bull. Lebedev. Phys. Inst., 2019, vol. 46, no. 4, pp. 126--129. DOI: https://doi.org/10.3103/S1068335619040055

[9] Fuentes J.L.M., Fernandez E.J., Prieto P.M., et al. Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating. Opt. Express., 2016, vol. 24, no. 13, pp. 14159--14171. DOI: https://doi.org/10.1364/oe.24.014159

[10] Naprienko S.A., Medvedev P.N., Raevskikh A.N., et al. Diffraction-based investigation methods in analysing plastic strain zone underneath fracture surface. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2019, no. 4 (127), pp. 97--110 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2019-4-97-110

[11] Kulakova N.N., Kaledin S.B., Sazonov V.N. Error analysis of IR lens focal length measured by a goniometric method. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2017, no. 4 (115), pp. 17--26 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3933-2017-4-17-26

[12] Zavarzin V.I., Osipovich I.R. Measurement of modulation transfer function for large-sized lenses. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2003, no. 2 (51), pp. 76--84 (in Russ.).

[13] Allain С., Cloitre M. Optical diffraction on fractals. Phys. Rev. B, 1986, vol. 33, no. 5, pp. 3566--3569. DOI: https://doi.org/10.1103/PhysRevB.33.3566

[14] Ноu B., Hu G., Wen W., et al. Diffraction by an optical fractal grating. Appl. Phys. Lett., 2004, vol. 85, no. 35, pp. 6125--6127. DOI: https://doi.org/10.1063/1.1840112

[15] Uno K., Uozumi J., Asakura T. Statistical properties of the Fraunhofer diffraction field produced by random fractals. Appl. Opt., 1993, vol. 32, no. 15, pp. 2722--2729. DOI: https://doi.org/10.1364/AO.32.002722

[16] Sakurada Y., Uozumi J., Asakura T. Diffraction fields of fractally bounded apertures. Opt. Rev., 1994, vol. 1, no. 1, pp. 3--7. DOI: https://doi.org/10.1007/s10043-994-0003-9

[17] Chabassier G., Angeli B., Heliodore F., et al. Optical wave diffraction on fractal objects. Pure Appl. Optics, 1992, vol. 1, no. 1, pp. 41--54. DOI: https://doi.org/10.1088/0963-9659/1/1/005

[18] Born M., Wolf E. Principles of optics. Cambridge, Cambridge University Press, 1999.

[19] Zavarzin V.I., Kalyuzhny A.I. Numerical calculation of Kirchhoff integral in approximation of Fresnel diffraction. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2000, no. 3 (40), pp. 31--42 (in Russ.).

[20] Algazin O.D., Kopaev A.V. The solution of the mixed boundary value problem of Dirichlet --- Neumann for the Poisson equation in a multidimensional. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2016, no. 3 (66), pp. 42--56 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2016-3-42-56

[21] Uozumi J., Kumura H., Asakura T. Fraunhofer diffraction by Koch fractals: the dimensionality. J. Mod. Opt., 1990, vol. 38, no. 7, pp. 1335--1347. DOI: https://doi.org/10.1080/09500349114551501

[22] Dronnikova S.A., Gurov I.P. Image quality enhancement by processing of video frames with different exposure time. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2017, vol. 17, no. 13, pp. 424--430 (in Russ.). DOI: https://doi.org/10.17586/2226-1494-2017-17-3-424-430

[23] Vintaev V.N., Zhilenev M.Yu., Matorin S.I., et al. The technique of formation and correction of high-resolution space images. Nauchnyy rezultat. Informatsionnye tekhnologii [Research Result. Information Technologies], 2016, no. 1 (in Russ.). DOI: https://doi.org/10.18413/2518-1092-2016-1-1-72-80

[24] Richardson W.H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 1972, vol. 62, no. 1, pp. 55--59. DOI: https://doi.org/10.1364/JOSA.62.000055

[25] Levin A. Blind motion deblurring using image statistics. In: Advances in neural information processing systems. Vol. 16. Cambridge, MIT Press, 2006, p. 841.