|

Analyzing Critical Parameters of the Attitude Gyro with the Rotor Residual Dynamic Imbalance

Authors: Shcheglova N.N. Published: 02.04.2024
Published in issue: #1(146)/2024  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments  
Keywords: floated gyro, gas-dynamic support stiffness, rotor dynamic imbalance, natural frequencies, critical stiffness, gyro passage to stop

Abstract

The paper analyzes parameters of the attitude gyro on a gas-dynamic support with the rotor residual dynamic imbalance in the free gyro mode, as well as conditions and reasons causing the gyro unexpected passage to stop during the experiment. It was established that sharp increase in the forced oscillations amplitude of the gyro frames up to touching the stops could occur with simultaneous confluence of several unfavorable factors. These factors include decrease during operation in the stiffness coefficient of the gas-dynamic support to a critical point in case of the increasing rotor dynamic imbalance coefficient and filling the device with liquid with the reduced viscosity coefficient. Critical point of the gas-dynamic support stiffness coefficient was found for the nominal values of the rotor rotation angular velocity and the frame forced oscillations amplitude by the rotor dynamic imbalance. A relationship was obtained between critical values of the gas-dynamic support stiffness, which could wear out during the long-term continuous operation, and the rotor natural angular rotation velocity. Values of the rotor dynamic imbalance coefficient and the fluid viscosity coefficient were determined, for which the gyro frames oscillations amplitude would not exceed 10 arc in case of combining the gas-dynamic support stiffness value with the critical point

Please cite this article in English as:

Shcheglova N.N. Analyzing critical parameters of the attitude gyro with the rotor residual dynamic imbalance. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 1 (146), pp. 57--73 (in Russ.). EDN: DFRFOR

References

[1] Besekerskiy V.A., Ivanov V.A., Samotokin B.B. Orbitalnoe girokompasirovanie [Orbital gyrocompassing]. St. Petersburg, Politekhnika Publ., 1993.

[2] Nekhamkin L.I., Ryabikov V.S., Svirina M.A., et al. Peculiarities of application 3-power gyro GPA-L2-2 in the circuit controlling the KA orientation of the spacecraft. Aviakosmicheskoe priborostroenie [Aerospace Instrument-Making], 2014, no. 1, pp. 35--43 (in Russ.).

[3] Valko A.D., Garankin V.A., Isaev V.A. Movement of a three-stage gyroscope with a dynamically unbalanced rotor when the inner frame contacts an elastic limiter. Izv. AN SSSR. MTT, 1989, no. 2, pp. 25--29 (in Russ.).

[4] Martynenko Yu.G., Ryabikov V.S., Shcheglova N.N., et al. The movement of a three-stage float gyroscope at its contact with the stop. Giroskopiya i navigatsiya, 2006, no. 2, pp. 51--61 (in Russ.).

[5] Babakov I.M. Teoriya kolebaniy [Theory of oscillations]. Moscow, Nauka Publ., 1968.

[6] Bulgakov B.V. Kolebaniya [Oscillations]. Moscow, Gostekhizdat Publ., 1954.

[7] Zhuravlev V.F., Klimov D.M. Prikladnye metody v teorii kolebaniy [Applied methods in the theory of oscillations]. Moscow, Nauka Publ., 1988.

[8] Ilin M.M., Kolesnikov K.S., Saratov Yu.S. Teoriya kolebaniy [Theory of oscillations]. Moscow, BMSTU Publ., 2001.

[9] Netushil A.V., ed. Teoriya avtomaticheskogo upravleniya [Theory of automatic control]. Moscow, Vysshaya shkola Publ., 1967.

[10] Solodovnikov V.V., Plotnikov V.N., Yakovlev A.V. Osnovy teorii i elementy sistem avtomaticheskogo regulirovaniya [Fundamentals of theory and elements of automatic control systems]. Moscow, Mashinostroenie Publ., 1985.

[11] Ishlinskiy A.Yu. Mekhanika giroskopicheskikh system [Mechanics of gyroscopic systems]. Moscow, AN SSSR Publ., 1963.

[12] Plymale B.T., Goodstein R. Nutation of a free gyro subjected to an impulse. J. Appl. Mech., 1955, vol. 22, iss. 3, pp. 365--366. DOI: https://doi.org/10.1115/1.4011089

[13] Magnus K. Beitrage zur Dynamik des kraftefreien, kardanisch gelagerten Kreisels. Z. Angew. Math. Mech., 1955, vol. 35, no. 1-2, pp. 23--34.

[14] Pelpor D.S., ed. Giroskopicheskie pribory i sistemy [Gyroscopic devices and systems]. Moscow, Vysshaya shkola Publ., 1988.

[15] Borzov V.I. On the influence of the elasticity of the supports of the axis of the inner ring of the cardan suspension on nutation oscillations and the departure of the gyroscope. Izv. AN SSSR. MTT, 1969, no. 3, pp. 36--42 (in Russ.).

[16] Kharlamov S.A. The influence of elasticity in the axis bearing of the external ring in a Cardan suspension on the nutation and drift of a gyroscope. Dokl. AN SSSR, 1962, vol. 142, no. 5, pp. 1054--1057 (in Russ.).

[17] Rudenko V.M. Investigation of dynamics of an astatic gyroscope with elastic cardan suspension. Izv. AN SSSR. MTT, 1978, no. 1, pp. 15--21 (in Russ.).

[18] Andreychenko K.P. To theory of liquid damping in float devices. Izv. AN SSSR. MTT, 1977, no. 5, pp. 13--23 (in Russ.).

[19] Gorodetskiy O.M. Investigation of disturbing moments of viscous friction forces in the sub-weight of a float gyroscope. Izv. AN SSSR. MTT, 1977, no. 1, pp. 10--16 (in Russ.).

[20] Martynenko Yu.G. Dynamics of a spherical float gyroscope in a gimbal suspension. Izv. AN SSSR. MTT, 1968, no. 4, pp. 28--32 (in Russ.).

[21] Klimov D.M., Kharlamov S.A. Dinamika giroskopa v kardanovom podvese [Dynamics of a gyroscope in gimbals]. Moscow, Nauka Publ., 1978.

[22] Van Khao Lo, Nesterenko T.G. Resonant tuning system of MEMS multi-axis vibrating gyroscope. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings of Universities. Electronics], 2019, vol. 24, no. 3, pp. 267--278 (in Russ.). DOI: https://doi.org/10.24151/1561-5405-2019-24-3-267-278

[23] Naumenko D.V. [Simulation of the micromechanical gyroscope sensor]. KompTekh--2019. Mater. Vseros. nauch.-tekh. konf. [CompTech--2019. Proc. Russ. Sci.-Pract. Conf.]. Taganrog, SFU, 2019, pp. 263--268 (in Russ.).

[24] Sharygin B.L., Butsik A.Ya., Demidov A.N. Sposob diagnostiki sostoyaniya gazodinamicheskoy opory rotora poplavkovogo giroskopa [Method of diagnostics of state of gas-dynamic support of float gyro rotor]. Patent RU 2690231. Appl. 09.07.2018, publ. 31.05.2019 (in Russ.).

[25] Sharygin B.L., Butenko M.V., Marinchenko A.N. Sposob tekhnicheskogo obsluzhivaniya sistemy inertsialnoy navigatsii i stabilizatsii [Method for maintenance of system of inertial navigation and stabilization]. Patent RU 2784704. Appl. 04.10.2021, publ. 29.11.2022 (in Russ.).