|

Information and Metrology-Driven Optimisation of Wavefront Error in Telescope-Detected Radiation

Authors: Sychev V.V., Klem A.I. Published: 10.09.2020
Published in issue: #3(132)/2020  
DOI: 10.18698/0236-3933-2020-3-37-51

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Metrology and Measurement Assurance  
Keywords: aberration computation, optical system, Millimetron space telescope, wavefront, image quality

The paper presents a solution to an information and metrology problem concerning minimising the wave-front error of telescope-detected radiation. As an example, we used aberration computation and simulation describing the optical system of the space telescope installed in the Millimetron observatory. We show that many factors that affect a space telescope decrease the quality of the image obtained. It is necessary to eliminate the effects of the distortion-generating factors and reduce their contribution to the total wavefront error. As the dimensions of the collecting aperture in telescopes increase, the factors that distort the wavefront of the radiation detected by the telescope begin to significantly affect the quality of the image obtained. We consider the ways of decreasing the effects of the distortion-generating factors caused by aberrations in the optical system. One of the solutions to this problem is to select a rational configuration of the space telescope optical system. In order to minimise the aberration, we used the Zemax 13 Release 2 SP4 Premium software package to simulate the optical system, to analyse and optimise it so as to diminish the scattering spot in the exit pupil. We achieved this goal by decreasing the spherical aberration and ensuring a more uniform distribution of it over the field. We used the data obtained to estimate the admissible dimensions of the misalignment spot

References

[1] Lillie C.F., Polidan R.S., Dailey D.R. Key enabling technologies for the next generation of space telescopes. Proc. SPIE, 2010, vol. 7731, art. 773102. DOI: https://doi.org/10.1117/12.857826

[2] Kirichenko D.V., Kleymenov V.V., Novikova E.V. Large optical space-based telescopes. Izvestiya vuzov. Priborostroenie [Journal of Instrument Engineering], 2017, vol. 60, no. 7, pp. 589--602 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2017-60-7-589-602

[3] Missions. Spitzer Space Telescope. jpl.nasa.gov: website. Available at: https://www.jpl.nasa.gov/missions/spitzer-space-telescope (accessed: 28.01.2020).

[4] JWST Telescope. jwst-docs.stsci.edu: website. Available at: https://jwst-docs.stsci.edu/jwst-observatory-hardware/jwst-telescope (accessed: 27.08.2019).

[5] Sychev V.V. Adaptivnye opticheskie sistemy v krupnogabaritnom teleskopostroenii [Adaptive optical systems in large-scale telescope production]. Staryy Oskol, Tonkie naukoemkie tekhnologii Publ., 2005.

[6] Millimetron space laboratory. millimetron.ru: website. Available at: http://www.millimetron.ru/en (accessed 27.08.2019).

[7] Sychev V.V., Klem A.I. Adaptation problems in the space telescope of "Millimetron" observatory. Optika atmosfery i okeana [Atmospheric and Oceanic Optics], 2017, vol. 30, no. 1, pp. 93--102 (in Russ.). DOI: http://dx.doi.org/10.15372/AOO20170113

[8] Artal P., ed. Handbook of visual optics. Vol. 2. Instrumentation and vision correction. CRC Press, 2017.

[9] Klebanov Ya.M., Karsakov A.V., Khonina S.N., et al. Wave front aberration compensation of space telescopes with telescope temperature field adjustment. Komp’yuternaya optika [Computer Optics], 2017, vol. 41, no. 1, pp. 30--36 (in Russ.).

[10] Kozhevnikov A.V. [Study on aberration effect on image quality in optical systems]. Sb. tr. III mezhdunar. konf. i molodezhnoy shkoly ITNT-2017 [Proc. III Int. Conf. and Youth School ITNT-2017]. Samara, Novaya tekhnika Publ., 2017, pp. 344--348 (in Russ.).

[11] Kulakova N.N., Kaledin S.B., Sazonov V.N. Error analysis of IR lens focal length measured by a goniometric method. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2017, no. 4 (115), pp. 17--26 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2017-4-17-26

[12] Timashova L.N., Kulakova N.N., Sazonov V.N. Opto-electronic system for measurment of spherical aberration. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2018, no. 6 (123), pp. 112--122 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2018-6-112-122

[13] Levin I.A. Thermo-optical aberrations of radially symmetric diffractive optical elements. Komp’yuternaya optika [Computer Optics], 2016, vol. 40, no. 1, pp. 51--56 (in Russ.). DOI: https://doi.org/10.18287/2412-6179-2016-40-1-51-56

[14] Seliverstova E.V., Shcherbina G.A., Shurygin B.M. Algorithm of finding aberration coefficients for space opto-electronic devices. Zhurnal radioelektroniki [Journal of Radio Electronics], 2017, no. 12 (in Russ.). Available at: http://jre.cplire.ru/jre/dec17/8/abstract.html

[15] Sokolskiy M.N. Dopuski i kachestvo opticheskogo izobrazheniya [Tolerances and quality of an optical image]. Leningrad, Mashinostroenie Publ., 1989.

[16] Feinberg L., Dean B., Hayden W.L., et al. Space telescope design considerations. Opt. Eng., 2012, vol. 51, no. 1, art. 011006-1-10. DOI: https://doi.org/10.1117/1.OE.51.1.011006

[17] Born M., Wolf E. Principles of optics. Pergamon Press, 1970.