Effect of the Main Rotor and Other Helicopter Design Features on the Performance of Satellite Radionavigation System User Equipment Mounted on the Craft
Authors: Zubov N.E., Eshchenko A.A., Demin S.S., Maslennikova G.E., Ivanenko S.V. | Published: 03.09.2019 |
Published in issue: #4(127)/2019 | |
DOI: 10.18698/0236-3933-2019-4-71-83 | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instrumentation and Methods to Transform Images and Sound | |
Keywords: navigation, satellite radionavigation system, helicopter, main rotor, diffraction, antenna shielding, navigation accuracy, bit error rate |
We analysed how signal diffraction caused by the main rotor, signal reflection from helicopter components, and receiver antenna shielding by the main rotor blades affect the signal-to-noise ratio in the correlator band of satellite radionavigation system user equipment for GLONASS and GPS, its navigation precision and error probability when transmitting overhead information from navigation spacecraft to the helicopter. The investigation showed that the effect of helicopter design on the performance of user equipment mounted on it manifests as antenna shielding and diffraction waves appearing at the edges. The presence of diffraction waves and reduction in the original signal amplitude as a result of shielding the user equipment antenna leads to the Bit Error Rate in the overhead information transmission channel increasing by one or two orders of magnitude. Effect on navigation accuracy is negligible
References
[1] Solov’yev Yu.A. Sistemy sputnikovoy navigatsii [Satellite navigation systems]. Moscow, Eko-Trendz Publ., 2000.
[2] Perov A.I., Kharisov V.N., ed. GLONASS. Printsipy postroeniya i funktsionirovaniya [GLONASS. Principles of construction and functioning]. Moscow, Radiotekhnika Publ., 2005.
[3] Erokhin V.V. Aircraft trajectory control at the motion on the predetermined route based on the global navigation satellite system. Russ. Aeronaut., 2018, vol. 61, no. 3, pp. 371--378. DOI: 10.3103/S106879981803008X
[4] Rozenberg I.N., Sokolov S.V., Bayandurova A.A. Improving the positional accuracy of the airborne vehicle during its motion along the predetermined path. Russ. Aeronaut., 2018, vol. 61, no. 2, pp. 212--219. DOI: 10.3103/S1068799818020095
[5] Antsev G.V., Lysenko L.N., Petrov V.A. Increased accuracy in determining the orbital parameters based on convolution operators application as a result of small interval GLONASS data processing. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 5, pp. 99--110 (in Russ.). DOI: 10.18698/0236-3933-2016-5-99-110
[6] Mikrin E.A., Mikhaylov M.V. Navigatsiya kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh system [Spacecraft navigation by measurements from global satellite navigation systems]. Moscow, Bauman MSTU Publ., 2017.
[7] Mikrin E.A., Mikhaylov M.V. Orientatsiya, vyvedenie, sblizhenie i spusk kosmicheskikh apparatov po izmereniyam ot global
[8] Bamford W., Winternitz L., Hay C. Autonomous GPS positioning at high earth orbits. gpsworld.com: website. Available at: https://www.gpsworld.com/transportationaviationinnovation-spacecraft-navigator-1053 (accessed: 18.02.2019).
[9] Borovikov V.A., Kinber B.E. Geometricheskaya teoriya difraktsii [Geometric diffraction theory]. Moscow, Svyaz’ Publ., 1978.
[10] Dolukhanov M.P. Rasprostranenie radiovoln [Radio waves distribution]. Moscow, Svyaz’ Publ., 1972.
[11] Kozlov A.V., red. Problemy sovershenstvovaniya tekhnicheskogo obsluzhivaniya aviatsionnoy tekhniki inzhenerno-aviatsionnogo obespecheniya poletov [Problems of refining maintenance service of aviation techniques for engineering-aviation maintenance of flights]. Moscow, MIIGA Publ., 1988.
[12] Levin B.R. Teoreticheskie osnovy statisticheskoy radiotekhniki. Kn. 1 [Theoretical fundamentals of statistic radio engineering. Vol. 1]. Moscow, Sovetskoe radio Publ., 1966.