Computation of a Beam Micro-Opto-Electro-Mechanical Linear Acceleration Transducer Based on the Optical Tunnel Effect
Authors: Busurin V.I., Makarenkova N.A., Zaw Lwin Htoo | Published: 24.01.2025 |
Published in issue: #4(149)/2024 | |
DOI: | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Information-Measuring and Control Systems | |
Keywords: micro-opto-electro-mechanical transducer, linear acceleration, optical modulator, optical tunnel effect, sensitivity, nonlinearity error, computation algorithm |
Abstract
The paper considers functional diagram of a linear acceleration transducer with a modulator based on the optical tunnel effect designed to obtain information on the nanometer motion of a beam sensitive element arising under the linear accelerations action. It determines a set of parameters of the optical modulator of the micro-opto-electro-mechanical linear acceleration transducer to ensure the linear accelerations measurement in a given range with a given nonlinearity error. Dependence of the conversion function nonlinearity error on the optical modulator sensitivity alteration range is identified basing on the optical tunnel effect when using the different wavelengths. The sensitive element motion range is determined by the permissible alteration in the optical modulator sensitivity depending on the value of the m parameter found with a given nonlinearity error in the conversion function. The paper proposes an algorithm for computing a beam micro-opto-electro-mechanical linear acceleration transducer based on the optical tunnel effect. The algorithm uses a mathematical model of the linear acceleration transducer and makes it possible to determine parameters of the optical, mechanical and electronic parts of the transducer based on a set of the initial data. Software is developed that implements the algorithm for computing design parameters of the beam micro-opto-electro-mechanical linear acceleration transducer to measure linear accelerations in a given range with a given nonlinearity error in the conversion function
The work was supported by the Russian Science Foundation (grant no. 23-29-00954, https://rscf.ru/project/23-29-00954)
Please cite this article in English as:
Busurin V.I., Makarenkova N.A., Zaw Lwin Htoo. Computation of a beam micro-opto-electro-mechanical linear acceleration transducer based on the optical tunnel effect. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 4 (149), pp. 25--40 (in Russ.). EDN: ZRJVRH
References
[1] Rahimi M., Taghavi M., Malekmohammad M. Coarse-to-fine optical MEMS accelerometer design and simulation. Appl. Opt., 2022, vol. 61, no. 2, pp. 629--637. DOI: https://doi.org/10.1364/AO.439762
[2] Sundar S., Gopalakrishna K., Thangadurai N. MOEMS-based accelerometer sensor using photonic crystal for vibration monitoring in an automotive system. Int. J. Comput. Aided Eng. Technol., 2021, vol. 14, no. 2, pp. 206--224. DOI: https://doi.org/10.1504/IJCAET.2021.113546
[3] Lu Q., Wang Y., Wang X., et al. Review of micromachined optical accelerometers: from mg to sub-μg. Opto-Electron. Adv., 2021, vol. 4, no. 3, art. 200045. DOI: https://doi.org/10.29026/oea.2021.200045
[4] Liu H.F., Luo Z.C., Hu Z.K., et al. A review of high-performance MEMS sensors for resource exploration and geophysical applications. Pet. Sc., 2022, vol. 19, no. 6, pp. 2631--2648. DOI: https://doi.org/10.1016/j.petsci.2022.06.005
[5] Jian A., Wei C., Guo L., et al. Theoretical analysis of an optical accelerometer based on resonant optical tunneling effect. Sensors, 2017, vol. 17, no. 2, art. 389. DOI: https://doi.org/10.3390/s17020389
[6] Antipov A.S., Kokunko J.G., Krasnova S.A., et al. Direct control of the endpointof the manipulator under non-smooth uncertainty and reference trajectories. J. Franklin Inst., 2023, vol. 360, no. 17, pp. 13430--13458. DOI: https://doi.org/10.1016/j.jfranklin.2023.10.001
[7] Krasnova S.A., Antipov A.S., Krasnov D.V., et al. Cascade synthesis of observers of mixed variables for flexible joint manipulators tracking systems under parametric and external disturbances. Electronics, 2023, vol. 12, no. 8, art. 930. DOI: https://www.mdpi.com/2079-9292/12/8/1930
[8] Zhao X., Wang Y., Wen D. Fabrication and characteristics of a SOI three-axis acceleration sensor based on MEMS technology. Micromachines, 2019, vol. 10, no. 4, art. 238. DOI: https://doi.org/10.3390/mi10040238
[9] Lu Q., Bai J., Wang K., et al. Single chip-based nano-optomechanical accelerometer based on subwavelength grating pair and rotated serpentine springs. Sensors, 2018, vol. 18, no. 7, art. 2036. DOI: https://doi.org/10.3390/s18072036
[10] Nie Y., Huang K., Yang J., et al. A proposal to enhance high-frequency optical MEMS accelerometer sensitivity based on a one-dimensional photonic crystal wavelength modulation system. IEEE Sens. J., 2020, vol. 20, no. 24, pp. 14639--14645. DOI: https://doi.org/10.1109/JSEN.2020.3006220
[11] Ibrakhim M.A., Lukyanov V.V. Algorithms and configuration for a moving object attitude control system based on microelectromechanical sensors. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2020, no. 2 (131), pp. 44--58 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3933-2020-2-44-58
[12] Balasubramanian M., Krishnaswamy N., Pattnaik P.K. Optical MEMS accelerometer based on waveguide Bragg grating integrated with crab-leg beam. IEEE SENSORS, 2020. DOI: https://doi.org/10.1109/SENSORS47125.2020.9278931
[13] Wan F., Qian G., Li R., et al. High sensitivity optical waveguide accelerometer based on Fano resonance. Appl. Opt., 2016, vol. 55, no. 24. DOI: http://dx.doi.org/10.1364/AO.55.006644
[14] Ahmadian M., Jafari K. A graphene-based wide-band MEMS accelerometer sensor dependent on wavelength modulation. IEEE Sens. J., 2019, vol. 19, no. 5, pp. 6226--6232. DOI: https://doi.org/10.1109/JSEN.2019.2908881
[15] Huang K., Nie Y., Liu Y., et al. A proposal for a high-sensitivity optical MEMS accelerometer with a double-mode modulation system. J. Light. Technol., 2021, vol. 39, no. 1, pp. 303--309. DOI: https://doi.org/10.1109/JLT.2020.3023038
[16] Busurin V.I., Win Y.N., Zheglov M.A. Effect of linear acceleration on the characteristics of an optoelectronic ring transducer of angular velocity and its compensation. Optoelectron. Instrument. Proc., 2019, vol. 55, no. 3, pp. 309--316. DOI: https://doi.org/10.3103/S8756699019030142
[17] Korobkov K.A. Razrabotka i issledovanie mikrooptoelektromekhanicheskogo adaptiruemogo preobrazovatelya lineynogo uskoreniya na osnove metodov dvukhkanalnoy obrabotki signalov. Dis. kand. tekh. nauk [Development and research of micro-optoelectromechanical adaptable linear acceleration transducer based on two-channel signal processing methods. Cand. Sc. (Eng.). Diss.]. Moscow, MAI, 2021 (in Russ.).
[18] Barbin E.S., Nesterenko T.G., Koleda A.N., et al. A system for positioning an optical tunnel measuring transducer of a microoptoelectromechanical micro-g accelerometer. IEEE 23rd EDM, 2022, pp. 42--47. DOI: https://doi.org/10.1109/EDM55285.2022.9855026
[19] Pham A.T., Nguyen V.T., Nguyen V.T., et al. Micro-opto-electro-mechanical transducers for measurement and control systems. SSRG-IJEEE, 2018, vol. 5, no. 10, pp. 7--11. DOI: https://doi.org/10.14445/23488379/IJEEE-V5I10P103
[20] Busurin V.I., Gorshkov B.G., Korobkov V.V. Volokonno-opticheskie informatsionno-izmeritelnye sistemy [Fibre optic information and measurement systems]. Moscow, MAI Publ., 2012.
[21] Bhaskaran P.R., Rathnam J.D., Koilmani S. A simple analytical model for MEMS cantilever beam piezoelectric accelerometer and high sensitivity design for SHM (structural health monitoring) applications. Trans. Electr. Electron. Mater., 2017, vol. 18, no. 2, pp. 78--88. DOI: https://doi.org/10.4313/TEEM.2017.18.2.78