|

Fuzzy system dynamics of automatic optimization

Authors: Demenkov N.P., Mochalov I.A. Published: 19.02.2016
Published in issue: #1(106)/2016  
DOI: 10.18698/0236-3933-2016-1-59-74

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: automatic optimization system, plant, extremal controller, fuzzy differential equation, membership function, fuzzy initial task

The automatic optimization system of the nonlinearity-linearity type plant is considered. Its linear part is described by first-order fuzzy differential equation and the extremal controller with memorizing of extremum is used as a control organ. The exact method is used for the transient analysis in the input-output coordinates by solution of a corresponding fuzzy nonlinear differential equation. Its fuzziness is supposed to be caused by the dynamic parameter fuzziness with respect to the initial conditions. The simulation results are given.

References

[1] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo upravleniya [Theory of Automatic Control Systems]. Moscow, Nauka Publ., 1975.

[2] Rastrigin L.A. Sistemy ekstremal’nogo upravleniya [Systems of Extreme Control]. Moscow, Nauka Publ., 1974.

[3] Kazakevich V.V., Rodov A.B. Sistemy avtomaticheskoy optimizatsii [Systems of Automatic Optimization]. Moscow, Energiya Publ., 1977.

[4] Pupkov K.A., ed. Metody robastnogo, neyro-nechetkogo i adaptivnogo upravleniya [Methods of Robust, Neuro-Fuzzy and Adaptive Control]. Moscow, MGTU im. N.E. Baumana Publ., 2001.

[5] Otadi M., Mosleh M. Numerical solution of quadratic Riccati differential equation by neural network. Mathematical sciences, 2011, vol. 5, no. 3, pp. 249-257.

[6] Buckley J.J., Feuring T. Universal approximators for fuzzy functions. Fuzzy sets and systems, 2000, vol. 113, iss.3, pp.411-415. DOI: 10.1016/S0165-0114(98)00069-4

[7] Buckley J.J., Feuring T. Introduction to fuzzy partial differential equations. Fuzzy sets and systems, 1999, vol. 105, iss. 2, pp. 241-248.

[8] Goetschel Jr.R., Voxman W. Elementary fuzzy calculus. Fuzzy sets and systems, 1986, no. 18, iss. 1,pp. 31-43. DOI: 10.1016/0165-0114(86)90026-6

[9] Mochalov I.A., Khrisat M.S. Estimation Parameter Model Using Fuzzy Random Data Informatsionnye tekhnologii [Information Technologies], 2014, no. 2, pp. 14-22 (in Russ.).

[10] Demenkov N.P., Mochalov I.A. Fuzzy Splines. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2012, no. 2 (87), pp. 48-59 (in Russ.).

[11] Demenkov N.P., Mochalov I.A. Fuzzy interpolation. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2012, no. 2. Availlable at: http://technomag.bmstu.ru/doc/308732.html

[12] Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional’nogo analiza. [Elements of Functional Analysis and the Theory of Functions]. Moscow, Nauka Publ., 1972.