Hybrid Evolutionary Algorithm for Solving the Large-Scale Global Optimization Problems
Authors: Vakhnin A.V., Sopov E.A., Rurich M.A. | Published: 25.06.2023 |
Published in issue: #2(143)/2023 | |
DOI: 10.18698/0236-3933-2023-2-51-73 | |
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing | |
Keywords: large-scale global optimization, self-tuning evolutionary algorithm, differential evolution, cooperative coevolution |
Abstract
When solving applied problems in various areas of human activity, the need appears to find the best set of parameters according to the given criterion. Usually such a problem is being formulated as a parametric optimization problem. The paper considers optimization problems represented by the black-box model. As such problems dimension grows, it becomes difficult to find a satisfactory solution for many traditional optimization approaches even with a significant increase in the number of objective function calculations. A new hybrid evolutionary method in coordinating the self-adjusting coevolution algorithms with the COSACC-LS1 local search is proposed to solve the problems of global material optimization of the extra-large dimension. COSACC-LS1 is based on the idea of the computing resources automatic allocation between a group of self-tuning differential evolution algorithms based on coevolution and local search algorithm. Effectiveness of the proposed algorithm was evaluated on 15 reference test problems from the LSGO CE 2013 set. Results of the COSACC-LS1-based algorithm were compared with a number of modern metaheuristic algorithms that were designed specifically for solving the very large-scale optimization problems and were the winners and prize-winners in the optimization competitions conducted within the framework of the IEEE CEC. With the help of numerical experiments, it is demonstrated that the proposed algorithm is better than most other popular algorithms according to the average accuracy criterion of the solution found
The study was supported by the Ministry of Education and Science of Russian Federation (grant no. 075-15-2022-1121)
Please cite this article in English as:
Vakhnin A.V., Sopov E.A., Rurich M.A. Hybrid evolutionary algorithm for solving the large-scale global optimization problems. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2023, no. 2 (143), pp. 51--73 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2023-2-51-73
References
[1] Karpenko A.P. Sovremennye algoritmy poiskovoy optimizatsii. Algoritmy, vdokhnovlennye prirodoy [Modern search optimization algorithms. Algorithms inspired by nature]. Moscow, Bauman MSTU Publ., 2021.
[2] Del Ser J., Osaba E., Molina D., et al. Bio-inspired computation: where we stand and what’s next. Swarm Evol. Comput., 2019, vol. 48, pp. 220--250. DOI: https://doi.org/10.1016/j.swevo.2019.04.008
[3] Tang K. Summary of results on CEC’08 competition on large-scale global optimization. China, USTC, 2008.
[4] Tang K., Yao X., Suganthan P.N., et al. Benchmark functions for the CEC’2008 special session and competition on large-scale global optimization. China, USTC, 2007.
[5] Tang K., Li X., Suganthan P.N., et al. Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization China, USTC, 2008.
[6] Li X., Tang K., Omidvar M.N., et al. Benchmark functions for the CEC’2013 special session and competition on large-scale global optimization. Australia, RMIT University, 2013.
[7] Molina D., La Torre A. Toolkit for the automatic comparison of optimizers: comparing large-scale global optimizers made easy. Proc. IEEE CEC, 2018. DOI: https://doi.org/10.1109/CEC.2018.8477924
[8] Mahdavi S., Shiri M.E., Rahnamayan S. Metaheuristics in large-scale global continues optimization: a survey. Inf. Sc., 2015, vol. 295, pp. 407--428. DOI: https://doi.org/10.1016/j.ins.2014.10.042
[9] Singh A., Dulal N. A survey on metaheuristics for solving large-scale optimization problems. Int. J. Comput. Appl., 2017, vol. 170, no. 5, pp. 1--7. DOI: https://doi.org/10.5120/ijca2017914839
[10] Omidvar M.N., Li X., Yao X. A review of population-based metaheuristics for large-scale black-box global optimization. Part I. IEEE Trans. Evol. Comput., 2022, vol. 26, no. 5, pp. 802--822. DOI: https://doi.org/10.1109/TEVC.2021.3130838
[11] Omidvar M.N., Li X., Yao X. A review of population-based metaheuristics fo large-scale black-box global optimization. Part II. IEEE Trans. Evol. Comput., 2022, vol. 26, no. 5, pp. 823--843. DOI: https://doi.org/10.1109/TEVC.2021.3130835
[12] Molina D., La Torre A., Herrera F. SHADE with iterative local search for large-scale global optimization. Proc. IEEE CEC, 2018. DOI: https://doi.org/10.1109/CEC.2018.8477755
[13] La Torre A., Muelas S., Pena J.-M. Multiple offspring sampling in large-scale global optimization. Proc. IEEE CEC, 2012. DOI: https://doi.org/10.1109/CEC.2012.6256611
[14] Zhao S.Z., Liang J.J., Suganthan P.N., et al. Dynamic multi-swarm particle swarm optimizer with local search for large-scale global optimization. Proc. IEEE CEC, 2008, pp. 3845--3852. DOI: https://doi.org/10.1109/CEC.2008.4631320
[15] Marcelino C., Almeida P., Pedreira C., et al. Applying C-DEEPSO to solve large-scale global optimization problems. Proc. IEEE CEC, 2018. DOI: https://doi.org/10.1109/CEC.2018.8477854
[16] Lopez E., Puris A., Bello R. VMODE: a hybrid metaheuristic for the solution of large-scale optimization problems. Investig. Operacional, 2015, vol. 36, no. 3, pp. 232--239.
[17] Tseng L.-Y., Chen C. Multiple trajectory search for large-scale global optimization. Proc. IEEE CEC, 2018, pp. 3052--3059. DOI: https://doi.org/10.1109/CEC.2008.4631210
[18] Molina D., Herrera F. Iterative hybridization of DE with local search for the CEC’2015 special session on large-scale global optimization. Proc. IEEE CEC, 2015, pp. 1974--1978. DOI: https://doi.org/10.1109/CEC.2015.7257127
[19] Qin A.K., Huang V.L., Suganthan P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 2009, vol. 13, no. 2, pp. 398--417. DOI: https://doi.org/10.1109/TEVC.2008.927706
[20] Morales J., Nocedal J. Remark on "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization". ACM Trans. Math. Softw., 2011, vol. 38, no. 1, pp. 1--4. DOI: https://doi.org/10.1145/2049662.2049669
[21] La Torre A., Muelas S., Pena J.-M. Large-scale global optimization: experimental results with MOS-based hybrid algorithms. Proc. IEEE CEC, 2013, pp. 2742--2749. DOI: https://doi.org/10.1109/CEC.2013.6557901
[22] Tanabe R., Fukunaga A. Evaluating the performance of SHADE on CEC’2013 benchmark problems. Proc. IEEE CEC, 2013, pp. 1952--1959. DOI: https://doi.org/10.1109/CEC.2013.6557798
[23] Bolufe-Rohler A., Fiol-Gonzalez S., Chen S. A minimum population search hybrid for large-scale global optimization. Proc. IEEE CEC, 2015, pp. 1958--1965. DOI: https://doi.org/10.1109/CEC.2015.7257125
[24] Potter M., De Jong K. A cooperative coevolutionary approach to function optimization. PPSN 1994. Berlin, Springer Verlag, 1994, pp. 245--257. DOI: https://doi.org/10.1007/3-540-58484-6_269
[25] Yang Z., Tang K., Yao X. Large-scale evolutionary optimization using cooperative coevolution. Inf. Sc., 2008, vol. 178, no. 15, pp. 2985--2999. DOI: https://doi.org/10.1016/j.ins.2008.02.017
[26] Yang Z., Tang K., Yao X. Self-adaptive differential evolution with neighborhood search. Proc. IEEE CEC, 2008, pp. 1110--1116. DOI: https://doi.org/10.1109/CEC.2008.4630935
[27] Hadi A., Wagdy A., Jambi K. LSHADE-SPA memetic framework for solving large-scale optimization problems. Complex Intell. Syst., 2019, vol. 5, no. 1, pp. 25--40. DOI: https://doi.org/10.1007/s40747-018-0086-8
[28] Omidvar M.N., Li X., Yao X. Cooperative сoevolution with delta grouping for large-scale non-separable function optimization. Proc. IEEE CEC, 2010, pp. 1--8. DOI: https://doi.org/10.1109/CEC.2010.5585979
[29] Omidvar M.N., Li X., Mei Y., et al. Cooperative coevolution with differential grouping for large-scale optimization. IEEE Trans. Evol. Comput., 2014, vol. 18, no. 3, pp. 378--393. DOI: https://doi.org/10.1109/TEVC.2013.2281543
[30] Omidvar M.N., Yang M., Mei Y., et al. DG2: a faster and more accurate differential grouping for large-scale black-box optimization. IEEE Trans. Evol. Comput., 2017, vol. 21, no. 6, pp. 929--942. DOI: https://doi.org/10.1109/TEVC.2017.2694221
[31] Li L., Fang W., Wang Q., et al. Differential grouping with spectral clustering for large-scale global optimization. IEEE Trans. Evol. Comput., 2019, pp. 334--341. DOI: https://doi.org/10.1109/CEC.2019.8790056
[32] Liu J., Tang K. Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution. IDEAL 2013. Berlin, Springer Verlag, 2013, pp. 350--357. DOI: https://doi.org/10.1007/978-3-642-41278-3_43
[33] Mahdavi S., Rahnamayan S., Shiri M. Cooperative coevolution with sensitivity analysis-based budget assignment strategy for large-scale global optimization. Appl. Intell., 2017, vol. 47, no. 3, pp. 888--913. DOI: https://doi.org/10.1007/s10489-017-0926-z
[34] Ge H., Zhao M., Hou Y., et al. Bi-space interactive cooperative coevolutionary algorithm for large-scale black-box optimization. Appl. Soft Comput., 2020, vol. 97-A,art. 106798. DOI: https://doi.org/10.1016/j.asoc.2020.106798
[35] Liu W., Zhou Y., Li B., et al. Cooperative coevolution with soft grouping for large-scale global optimization. Proc. IEEE CEC, 2019, pp. 318--325. DOI: https://doi.org/10.1109/CEC.2019.8790053
[36] Sun Y., Kirley M., Halgamuge S. A recursive decomposition method for large-scale continuous optimization. IEEE Trans. Evol. Comput., 2018, vol. 22, no. 5, pp. 647--661. DOI: https://doi.org/10.1109/TEVC.2017.2778089
[37] Sun Y., Li X., Ernst A., et al. Decomposition for large-scale optimization problems with overlapping components. Proc. IEEE CEC, 2019, pp. 326--333. DOI: https://doi.org/10.1109/CEC.2019.8790204
[38] Vakhnin A., Sopov E. Investigation of the iCC framework performance for solving constrained LSGO problems. Algorithms, 2020, vol. 13, no. 5, art. 108. DOI: https://doi.org/10.3390/a13050108
[39] Vakhnin A., Sopov E. Investigation of improved cooperative coevolution for large-scale global optimization problems. Algorithms, 2021, vol. 14, no. 5, art. 146. DOI: https://doi.org/10.3390/a14050146
[40] Polakova R., Bujok P. Adaptation of population size in differential evolution algorithm: an experimental comparison. Proc. IWSSIP, 2018. DOI: https://doi.org/10.1109/IWSSIP.2018.8439374