|

Numerical solution features for contact deformation problem of rough bodies in ANSYS

Authors: Murashov M.V., Panin S.D. Published: 19.02.2016
Published in issue: #1(106)/2016  
DOI: 10.18698/0236-3933-2016-1-129-142

 
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Modelling, Numerical Methods, and Program Complexes  
Keywords: thermal contact conductance, roughness, finite element method, elastic-plastic deformation, ANSYS

The numerical solution for deformation problem of two rough bodies and the contact thermal conductance one is difficult because of a large number of computational algorithms parameters significantly affecting the results. The deformation problem is highly nonlinear due to elastic-plastic material properties and geometry change of the contacting rough surfaces which can be an obstacle to successful calculations. The article presents the features of solving the contact deformation problem occurring between rough bodies by means of ANSYS software. The example of solution for a micron-sized roughness domain is given. The solver errors emerging during the solution process are considered as well as the meshing impact. The necessity of asperity rounding is analyzed. The recommendations to choose the finite element types as well as numerous ANSYS options for such calculations are given.

References

[1] Carbone G., Bottiglione F. Asperity contact theories: Do they predict linearity between contact area and load? Journal of the Mechanics and Physics of Solids, 2008, vol. 56, pp. 2555-2572. DOI:10.1016/j.jmps.2008.03.011

[2] Pennec F. Modelisation du contact metal-metal: Application aux microcommutateurs MEMS RF. PhD These, Universite de Toulouse, 2009. 190 p.

[3] Czaplewski D.A., Patrizi G.A., Kraus G.M., Wendt J.R., Nordquist C.D., Wolfley S.L., Baker M.S., de Boer M.P. A nanomechanical switch for integration with CMOS logic. Journal of Micromechanics and Microengineering, 2009, vol. 19, no. 8, pp. 1-12. DOI:10.1088/0960-1317/19/8/085003

[4] Wang A.L., Zhao J.F. Review of prediction for thermal contact resistance. Science China. Technological Sciences, 2010, vol. 53, no. 7, pp. 1798-1808. DOI: 10.1007/s11431-009-3190-6

[5] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Mechanical analog modeling of the inelastic non-isothermal deformation processes. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and Numerical Methods], 2014, no. 3, pp. 25-38 (in Russ.).

[6] Ott L. Untersuchungen zur Frage der Erwarmung elektrischer Maschinen. Mitteilungen iiber Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, insbedere aus den Laboratorien der technischen Hochschulen. Berlin, Springer, 1906. H. 35-36, ss. 53-107.

[7] Barratt T. Thermal and electrical conductivities of some of the rarer metals and alloys. The Physical Society ofLondon Proceedings, 1914, vol. 26, part 5, pp. 346371. DOI: 10.1088/1478-7814/26/1/335

[8] Barratt T. The magnitude of the thermal resistance introduced at the slightly conical junction of two solids, and its variation with the nature of the surfaces in contact. The Physical Society of London Proceedings, 1915, vol. 28, pp. 14-20. DOI: 10.1088/1478-7814/28/1/302

[9] Thompson M.K. A Multi-Scale Iterative Approach for Finite Element Modelling of Thermal Contact Resistance: PhD. thesis, Cambridge, MA, USA, Massachusetts Institute of Technology, 2007. 100 p.

[10] Lee S., Jang Y.H., Kim W. Effects of nanosized contact spots on thermal contact resistance. Journal of Applied Physics, 2008, vol. 103. 074308. 8 p. DOI: 10.1063/1.2903450

[11] Ciavarella M., Delfine V., Demelio G. A "re-vitalized" Greenwood and Williamson model of elastic contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 2006, vol. 54, iss. 12, pp. 2569-2591. DOI: 10.1016/j.jmps.2006.05.006

[12] Bahrami M., Yovanovich M.M., Culham J.R. Thermal contact resistance at low contact pressure: Effect of elastic deformation. Int. J. Heat Mass Transfer., 2005, vol. 48, iss. 16, pp. 3284-3293. DOI: 10.1016/j.ijheatmasstransfer.2005.02.033

[13] Murashov M.V., Panin S.D. Modelling of thermal contact resistance. Tr. pyatoy Ross. nacionalnoy konf po teploobmenu [Proc. of the fifth Russian national conference on heat transfer]. Moscow, MEI Publ., 2010, vol. 7, pp. 142-145 (in Russ.).

[14] Yovanovich M.M. Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics. IEEE Transactions on Components and Packaging Technologies, 2005, vol. 28, no. 2, pp. 182-206. DOI: 10.1109/TCAPT.2005.848483

[15] Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, vol. 295, pp. 300-319. DOI: 10.1098/rspa.1966.0242

[16] Demkin N.B. Fakticheskaya ploshad kasaniya tverdih poverhnostey [Real contact area of hard surfaces], Moscow, AN SSSR Publ., 1962, 111 p.

[17] Kragelskiy I.V. Trenie i iznos [Friction and wear], Moscow, Mashgiz Publ., 1962, 383 p.

[18] Pei L., Hyun S., Molinari J.F., Robbins M.O. Finite element modeling of elasto-plastic contact between rough surfaces. Journal of the Mechanics and Physics of Solids, 2005, vol. 53, pp. 2385-2409. DOI:10.1016/j.jmps.2005.06.008

[19] Murashov M.V., Panin S.D. Material micromechnics: the prosesses on rough surfaces, Teplovieprocessi v tehnike [Thermal Processes in Engineering], 2010, no. 4, pp. 164168 (in Russ.).

[20] Murashov M.V., Panin S.D. Modeling of thermal contact conductance. Proceedings of the International heat transfer conference IHTC14, August 8-13, 2010, Washington, DC, USA, vol. 6, pp. 387-392. DOI: 10.1115/IHTC14-22616

[21] Wang L., Liu H., Zhang J., Zhao W. Analysis and modeling for flexible joint interfaces under micro and macro scale. Precision Engineering, 2013, vol. 37, iss. 4, pp. 817824. DOI: 10.1016/j.precisioneng.2013.03.008

[22] Yan W., Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces. Journal of Applied Physics, 1998, vol. 84, pp. 3617-3624. DOI: 10.1063/1.368536

[23] Kalpin Yu.G., Perfilov V.I., Petrov P.A., Ryabov V.A., Filippov Yu.K. Soprotivlenie deformatsii i plastichnost metallov pri obrabotke davleniem [Resistance to deformation and plasticity of metals treated by pressure], Moscow, Maschinostroenie Publ., 2011, 244 p.

[24] Thompson M.K., Thompson J.M. Considerations for the Incorporation of Measured Surfaces in Finite Element Models. Scanning, 2010, vol. 32, no. 4, pp. 183-198. DOI: 10.1002/sca.20180

[25] Kwon O.H., Thompson M.K. The effect of surface smoothing and mesh density for single asperity contact. Proceedings of the International Conference on Surface Metrology, Worcester, MA, 2009. 5 p.

[26] Kwon O.H. Investigation on the effect of mesh density and surface smoothing for real rough surfaces in contact. M.S. Thesis, Korea Advanced Institute of Science and Technology, Department of Civil and Environmental Engineering, 2009. 93 p.

[27] Dimitri R., De Lorenzis L., Scott M.A., Wriggers P., Taylor R.L., Zavarise G. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and Engineering, 2014, vol. 269, pp. 394-414. DOI:10.1016/j.cma.2013.11.002

[28] Wang E., Nelson Th., Rauch R. Back to Elements - Tetrahedra vs. Hexahedra. International ANSYS Conference, Pittsburg, PA, May 24-26, 2004. 16 p.

[29] Panin S.D., Astrahov A.V., Murashov M.V. The features of solving an axisymmetric nonlinear nonstationary heat conduction problem with moving boundary using finite element method. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proceedings of Higher Educational Institutions. Machine Building], 2003, no. 6, pp. 9-16 (in Russ.).