Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

В.И. Кузовлев, А.О. Орлов

84

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 5

Просьба ссылаться на эту статью следующим образом:

Кузовлев В.И., Орлов А.О. Выявление аномалий при прогнозном анализе данных //

Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2016. № 5. C. 75–85.

DOI: 10.18698/0236-3933-2016-5-75-85

ANOMALIES DETECTION IN PROGNOSTIC DATA ANALYSIS

V.I. Kuzovlev

A.O. Orlov

forewar@gmail.com

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

Keywords

Designing data models for prognostic purposes require

anomalies detection method. This article describes the

choice of the method and how it applies for the decision

tree model algorithm. The authors not only describe the

methods of data anomalies search, but also explain basic

steps of the algorithm itself. The work analyzes search pa-

rameters and their major influence on the method applica-

tion outcome. As a result of both anomalies detection

methods and decision tree model algorithm design the

accuracy of the prognostic model increases. It happens due

to improved model robustness and also a significant per-

formance improvement of the analysis

Anomalies, outliers in data, prog-

nostic analysis, decision tree model

REFERENCES

[1] Tolochko S.I., Chernen'kiy V.M. Information system analysis and the definition of a notion

of information system of prompt decision support.

Vestn. Mosk. Gos. Tekh. Univ. im.

N.E. Baumana, Priborostr., Spetsvyp.

[Herald of the Bauman Moscow State Tech. Univ., In-

strum. Eng., Spec. Issue], 2011, pp. 69–80 (in Russ.).

[2] Kuzovlev V.I., Orlov A.O. Prognostic analysis of data by ID3O.

Nauka i obrazovanie

.

MGTU im. N.E. Baumana

[Science & Education of the Bauman MSTU. Electronic Journal],

2012, no. 10. DOI: 10.7463/1012.0483286 Available at:

http://technomag.neicon.ru/

en/doc/483286.html

[3] Chandola V., Banerjee A., Kumar V. Anomaly detection: A survey.

ACM Computing

Surveys

, 2009, vol. 41, no. 3. Article 15. 58 p.

[4] Boriah S., Chandola V., Kumar V. Similarity measures for categorical data: A comparative

evaluation.

In Proceedings of the 8th SIAM International Conference on Data Mining

, 2008.

[5] Chernen'kiy V.M., Gapanyuk Yu.E. The passenger identification technique using passenger

name record data.

Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i innovacii”

[El.

Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2012, iss. 3.

DOI: 10.18698/2308-6033-2012-3-89 Available at:

http://engjournal.ru/eng/catalog/

it/biometric/89.html

[6] Tolochko S.I., Chernen'kiy V.M., Spiridonov I.N., Martynov P.I. Development and imple-

mentation of automated passport-control systems.

Jelektr. nauchno-tekh. izd. “Inzhenernyy