[14] Maurya R., Prasad S.M., Gopal R. LIF technique offers the potential for the detection
of cadmium-induced alteration in photosynthetic activities of Zea Mays L.
J. of
Photochemistry and Photobiology C: Photochemistry Reviews
, 2008, vol. 9, pp. 29–
35. DOI: 10.1016/j.jphotochemrev.2008.03.001
[15] Belov M.L., Bullo O.A., Gorodnichev V.A. Laser fluorescence detection method of
plant stress conditions caused by insufficient nutrients or contaminants in soil.
Jelektr.
Nauchno-Tehn. Izd. “Nauka i obrazovanie” MGTU im. N.E. Baumana
[El. Sc.-Tech.
Publ. “Science and Education” of Bauman MSTU], 2012, no. 12 (in Russ.). DOI:
10.7463/1212.0506199
[16] Middleton E., McMurtrey J.E., Entcheva Campbell P.K., Corp L.A., Butchera L.M.,
Chappellea E.W. Optical and fluorescence properties of corn leaves from different
nitrogen regimes.
Proc. of SPIE
, 2003, vol. 4879, pp. 72–83. DOI:10.1117/12.463087
[17] Merzlyak M.N. Pigments, leaf optics and plant state.
Soros. Obr. Zhur. (SOZh)
[Soros
Ed. J.], 1998, no. 4, pp. 19–24 (in Russ.).
[18] Burling K., Hunsche M., Noga G. Use of blue-green and chlorophyll fluorescence
measurements for differentiation between nitrogen deficiency and pathogen infection
in winter wheat.
J. Plant Physiol. (JPP)
, 2011, vol. 168, no. 14, pp. 1641–1648. DOI:
10.1016/j.jplph.2011.03.016
[19] Grishaev M.V., Sal’nikova N.S. A setup for remote recording of the spectrum of laser-
induced fluorescence from crowns of woody plants.
Pribory i tekhnika eksperimenta
[Instr. and Experim. Techn., vol. 53, no. 5. pp. 746–749], 2010, no. 5, pp. 133–136
(in Russ.). DOI: 10.1134/S0020441210050246
[20] Saito Y., Saito R., Nomura E., Kawahara T.D., Nomur A., Takaragaki S., Ida K.,
Takeda S. Performance check of vegetation fluorescence imaging lidar through in
vivo and remote estimation of chlorophyll concentration inside plant leaves.
Optical
Review
, 1999, vol. 6, no. 2, pp. 155–159. DOI: 10.1007/s10043-999-0155-8
[21] Afonasenko A.V., Iglakova A.I., Matvienko G.G., Oshlakov V.K., Prokop’ev V.E.
Laboratory and lidar measurements of birch leaves spectral characteristics in different
periods of vegetation.
Opt. Atmos. Okeana
[Atmos. Ocean Opt.], 2012, vol. 25, no. 3,
pp. 237–243 (in Russ.).
[22] Bunkin F.V., Bunkin A.F. Lidar sensing of water, ground, and plant surfaces.
Opt.
Atmos. Okeana
[Atmos. Ocean Opt.], 2000, vol. 13, no. 1, pp. 63–68 (in Russ.).
[23] Barbini R., Colao F., Fantom R., Palucci F., Ribezzo S. Laser remote monitoring
of the plant photosynthetic activity.
Proc. of SPIE
, 1995, vol. 2585, pp. 57–65.
DOI:10.1117/12.227169
[24] Yakovets O.G. Fitofiziologiya stressa [Phytophysiology of stress]. Minsk, BGU Publ.,
2010, 103 p.
[25] Lysenkov V.S., Varduni T.V., Soyer V.G., Krasnov V.P. Plant chlorophyll fluorescence
as an environmental stress characteristic: a theoretical basis of the method application.
Fundam. Iss.
[Fundam. Res.], 2013, no. 4 (1), pp. 112–119 (in Russ.).
Статья поступила в редакцию 18.03.2014
Белов Михаил Леонидович — д-р техн. наук, ведущий научный сотрудник НИИ РЛ
МГТУ им. Н.Э. Баумана. Автор более 200 научных работ в области лазерной локации
и атмосферной оптики.
МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, 2-я Бауманская ул.,
д. 5.
Belov M.L. — Dr. Sci. (Eng.), head researcher of “Radioelectronics and Laser Technology”
Research Institute of the Bauman Moscow State Technical University. Author of more
than 200 publications in the field of laser location and optic of atmosphere.
Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation.
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. “Приборостроение”. 2015. № 2 81