25.
Лысенков В.С.
,
Вардуни Т.В.
,
Сойер В.Г.
,
Краснов В.П.
Флуоресценция хлоро-
филла растений как показатель экологического стресса: теоретические основы
применения метода // Фундаментальные исследования. 2013. № 4. С. 112–119.
REFERENCES
[1] Panneton B., Guillaume S., Roger J.M., Samson G. Improved discrimination between
monocotyledonous and dicotyledonous plants for weed control based on the blue-
green region of ultraviolet-induced fluorescence spectra.
Appl. Spectrosc.
, 2010,
vol. 64, no. 1, pp. 30–36. DOI:
dx.doi.org/10.1366/000370210790572106[2] Panneton B., Guillaume S., Roger J.M., Samson G. Discrimination of corn
from monocotyledonous weeds with ultraviolet (UV) induced fluorescence.
Appl.
Spectrosc.
, 2011, vol. 65, no. 1, pp. 10–19. DOI:
dx.doi.org/10.1366/10-06100[3] Gouveia-Neto A.S., da Silva E.A., Cunha P.C., Oliveira-Filho R.A., Silva L.M.H.,
da Costa E.B., Cˆamara T.J.R., Willadino L.G. Plant abiotic stress diagnostic by
laser induced chlorophyll fluorescence spectral analysis of In vivo leaf tissue of
biofuel species.
Proc. of SPIE
, 2010, vol. 7568, pp. 75680G-1-75680G-8. DOI:
10.1117/12.839462
[4] Zhi-Qiang C., Wen-Li C. Effects of NaCl on photosynthesis in arabidopsis
and thellungiella leaves based on the fluorescence spectra, the fast chlorophyll
fluorescence induction dynamics analysis and the delayed fluorescence technique.
Proc. of SPIE
, 2010, vol. 7568, pp. 756822-1-756822-8. DOI: 10.1117/12.841257
[5] Saito Y., Takahashi K., Nomura E., Mineuchi K., Kawahara T.D., Nomura A.,
Kobayashi S., Ishi H. Visualization of laser-induced fluorescence of plants influenced
by environmental stress with a microfluorescence imaging system and a fluorescence
imaging lidar system.
Proc. of SPIE
, 1997, vol. 3059, pp. 190–198. DOI:
10.1117/12.277614
[6] Hristov H.A., Borisova E.G., Avramov L.A., Kolev I.N. Applications of laser-
induced fluorescence for remote sensing.
Proc. of SPIE, 11th Int. School on Quantum
Electronics: Laser Physics and Applications
, 2001, vol. 4397, pp. 496–500. DOI:
10.1117/12.425192
[7] Lee K.J., Park Y., Bunkin A., Nunes R., Pershin S., Voliak K. Helicopter-based lidar
system for monitoring the upper ocean and terrain surface.
Appl. Opt.
, 2002, vol. 41,
no. 3, pp. 401–406. DOI: 10.1364/AO.41.000401
[8] Corp L.A., McMurtrey J.E., Middleton E.M., Mulchi C.L., Chappelle E.W.,
Daughtry C.S.T. Fluorescence sensing systems: In vivo detection of biophysical
variations in field corn due to nitrogen supply.
Remote Sensing of Environment
,
2003, vol. 86, pp. 470-479. DOI: 10.1016/S0034-4257(03)00125-1
[9] Grishaev M.V., Zuev V.V., Kharchenko O.V. Fluorescent channel of the Siberian
Lidar Station.
Proc. of SPIE
, 2006, vol. 6580, pp. 65800U-1-65800U-6.
DOI:10.1117/12.724940
[10] Matvienko G., Timofeev V., Grishin A., Fateyeva N. Fluorescence lidar method
for remote monitoring of effects on vegetation.
Proc. of SPIE
, 2006, vol. 6367,
pp. 63670F-1-63670F-8. DOI: 10.1117/12.689612
[11] Zavoruev V.V., Zavorueva E.N. Fluorescence of poplar leaves, growing near the
road.
Opt. Atmos. Okeana
[Atmos. Ocean Opt.], 2011, vol. 24, no. 5, pp. 437–440
(in Russ.).
[12] Belasque J., Gasparoto M.C.G., Marcassa L.G. Detection of mecanical and disease
stresses in citrus plants by fluorescence spectroscopy.
Appl. Opt.
, 2008, vol. 47,
no. 11, pp. 1922–1926. DOI:
dx.doi.org/10.1364/AO.47.001922[13] Gouveia-Neto A.S., Silva E.A., Oliveira R.A., Cunha P.C., Costa E.B., Cˆamara T.J.R,
Willadino L.G. Water deficit and salt stress diagnosis through LED induced
chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel.
Proc.
of SPIE
, 2011, vol. 7902. pp. 79020А-1-79020А-10. DOI:10.1117/12.872991
80 ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. “Приборостроение”. 2015. № 2