Background Image
Previous Page  10 / 12 Next Page
Information
Show Menu
Previous Page 10 / 12 Next Page
Page Background

25.

Лысенков В.С.

,

Вардуни Т.В.

,

Сойер В.Г.

,

Краснов В.П.

Флуоресценция хлоро-

филла растений как показатель экологического стресса: теоретические основы

применения метода // Фундаментальные исследования. 2013. № 4. С. 112–119.

REFERENCES

[1] Panneton B., Guillaume S., Roger J.M., Samson G. Improved discrimination between

monocotyledonous and dicotyledonous plants for weed control based on the blue-

green region of ultraviolet-induced fluorescence spectra.

Appl. Spectrosc.

, 2010,

vol. 64, no. 1, pp. 30–36. DOI:

dx.doi.org/10.1366/000370210790572106

[2] Panneton B., Guillaume S., Roger J.M., Samson G. Discrimination of corn

from monocotyledonous weeds with ultraviolet (UV) induced fluorescence.

Appl.

Spectrosc.

, 2011, vol. 65, no. 1, pp. 10–19. DOI:

dx.doi.org/10.1366/10-06100

[3] Gouveia-Neto A.S., da Silva E.A., Cunha P.C., Oliveira-Filho R.A., Silva L.M.H.,

da Costa E.B., Cˆamara T.J.R., Willadino L.G. Plant abiotic stress diagnostic by

laser induced chlorophyll fluorescence spectral analysis of In vivo leaf tissue of

biofuel species.

Proc. of SPIE

, 2010, vol. 7568, pp. 75680G-1-75680G-8. DOI:

10.1117/12.839462

[4] Zhi-Qiang C., Wen-Li C. Effects of NaCl on photosynthesis in arabidopsis

and thellungiella leaves based on the fluorescence spectra, the fast chlorophyll

fluorescence induction dynamics analysis and the delayed fluorescence technique.

Proc. of SPIE

, 2010, vol. 7568, pp. 756822-1-756822-8. DOI: 10.1117/12.841257

[5] Saito Y., Takahashi K., Nomura E., Mineuchi K., Kawahara T.D., Nomura A.,

Kobayashi S., Ishi H. Visualization of laser-induced fluorescence of plants influenced

by environmental stress with a microfluorescence imaging system and a fluorescence

imaging lidar system.

Proc. of SPIE

, 1997, vol. 3059, pp. 190–198. DOI:

10.1117/12.277614

[6] Hristov H.A., Borisova E.G., Avramov L.A., Kolev I.N. Applications of laser-

induced fluorescence for remote sensing.

Proc. of SPIE, 11th Int. School on Quantum

Electronics: Laser Physics and Applications

, 2001, vol. 4397, pp. 496–500. DOI:

10.1117/12.425192

[7] Lee K.J., Park Y., Bunkin A., Nunes R., Pershin S., Voliak K. Helicopter-based lidar

system for monitoring the upper ocean and terrain surface.

Appl. Opt.

, 2002, vol. 41,

no. 3, pp. 401–406. DOI: 10.1364/AO.41.000401

[8] Corp L.A., McMurtrey J.E., Middleton E.M., Mulchi C.L., Chappelle E.W.,

Daughtry C.S.T. Fluorescence sensing systems: In vivo detection of biophysical

variations in field corn due to nitrogen supply.

Remote Sensing of Environment

,

2003, vol. 86, pp. 470-479. DOI: 10.1016/S0034-4257(03)00125-1

[9] Grishaev M.V., Zuev V.V., Kharchenko O.V. Fluorescent channel of the Siberian

Lidar Station.

Proc. of SPIE

, 2006, vol. 6580, pp. 65800U-1-65800U-6.

DOI:10.1117/12.724940

[10] Matvienko G., Timofeev V., Grishin A., Fateyeva N. Fluorescence lidar method

for remote monitoring of effects on vegetation.

Proc. of SPIE

, 2006, vol. 6367,

pp. 63670F-1-63670F-8. DOI: 10.1117/12.689612

[11] Zavoruev V.V., Zavorueva E.N. Fluorescence of poplar leaves, growing near the

road.

Opt. Atmos. Okeana

[Atmos. Ocean Opt.], 2011, vol. 24, no. 5, pp. 437–440

(in Russ.).

[12] Belasque J., Gasparoto M.C.G., Marcassa L.G. Detection of mecanical and disease

stresses in citrus plants by fluorescence spectroscopy.

Appl. Opt.

, 2008, vol. 47,

no. 11, pp. 1922–1926. DOI:

dx.doi.org/10.1364/AO.47.001922

[13] Gouveia-Neto A.S., Silva E.A., Oliveira R.A., Cunha P.C., Costa E.B., Cˆamara T.J.R,

Willadino L.G. Water deficit and salt stress diagnosis through LED induced

chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel.

Proc.

of SPIE

, 2011, vol. 7902. pp. 79020А-1-79020А-10. DOI:10.1117/12.872991

80 ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. “Приборостроение”. 2015. № 2