Previous Page  9 / 11 Next Page
Information
Show Menu
Previous Page 9 / 11 Next Page
Page Background

В.О. Чесноков

74

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

Чесноков Владислав Олегович

— аспирант, ассистент кафедры «Информационная

безопасность» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Ба-

уманская ул., д. 5).

Просьба ссылаться на эту статью следующим образом:

Чесноков В.О. Предсказание атрибутов профиля пользователя социальной сети путем ана-

лиза сообществ графа его ближайшего окружения // Вестник МГТУ им. Н.Э. Баумана.

Сер. Приборостроение. 2017. № 2. C. 66–76. DOI: 10.18698/0236-3933-2017-2-66-76

PREDICTING ATTRIBUTES OF USER PROFILE IN SOCIAL NETWORKS

BY ANALYZING COMMUNITIES OF THEIR EGO-NETWORK

V.O. Chesnokov

v.o.chesnokov@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

Keywords

In online social networks, a user is allowed to specify a lot

of personal information — attributes. Some users provide

only a part of whole information, or do not provide any

information about themselves at all. Due to that, inferred

hidden attributes are one of the fundamental problems of

social analysis.

The study proposes a new approach to

user's hidden or unspecified attributes prediction. The

method is based on analysis of the user's ego-network

structure and attributes of its social graph vertices. The

developed method was compared wth other methods

according to three datasets of users' ego-networks from

Facebook, Twitter and VKontakte social networks. It

showed high values of F-measure, precision and complete-

ness for predicting the chosen attributes of the user profile

such as hometown or school.

Using this method with

additional data sources an analyst with high precision

can

reveal the identity of an anonymous social network user by

their relations with other users

Social networks, social graph, com-

munity detection, profile prediction

REFERENCES

[1] Davis C.A.J., Pappa G.L., de Oliveira D.R.R., Arcanjo F. de Zima. Inferring the location of twit-

ter messages based on user relationships.

T. GIS

., 2011, vol. 15, no. 6, pp. 735–751.

DOI: 10.1111/j.1467-9671.2011.01297.x

Available at:

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2011.01297.x

/abstract

[2] Li R., Wang C., Chang K. C.-C. User profiling in an ego network: co-profiling attributes and

relationships.

Proc. 23rd Int. Conf. on World Wide Web. WWW '14

. New York, ACM, 2014,

pp. 819–830.

Available at:

http://wwwconference.org/proceedings/www2014/proceedings/

p819.pdf

[3] Dong Y., Yang Y., Tang J., Yang Y., Chawla N.V. Inferring user demographics and social strate-

gies in mobile social networks.

Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining. KDD '14

. New York, ACM, 2014, pp. 15–24.