Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

Предсказание атрибутов профиля пользователя социальной сети…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

75

[4] Korshunov A., Beloborodov I., Buzun N., Avanesov V., et al. Social network analysis: methods

and applications.

Trudy Instituta sistemnogo programmirovaniya RAN

[Proceedings of ISP RAS],

2014, vol. 26, no. 1, pp. 439–456 (in Russ.).

Available at:

http://cyberleninka.ru/article/n/analiz-sotsialnyh-setey-metody-i-prilozheniya

[5] Mislove A., Viswanath B., Gummadi K.P., Druschel P. You are who you know: inferring user

profiles in online social networks.

Proc. 3d ACM Int. Conf. on Web Search and Data Mining.

WSDM '10

. New York, ACM, 2010, pp. 251–260.

[6] Chaabane A., Acs G., Kaafar M. You are what you like! Information leakage through users’ in-

terests.

Proc. Annual Network and Distributed System Security Symposium

, 2012.

[7] Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital

records of human behavior.

Proc. of the National Academy of Sciences

, 2013, vol. 110, no. 15,

pp. 5802–5805. DOI: 10.1073/pnas.1218772110

Available at:

http://www.pnas.org/content/110/15/5802.full

[8] Dougnon R.Y., Fournier-Viger P., Nkambou R. Advances in artificial intelligence.

Proc. 28th

Canadian Conf. on Artificial Intelligence

. Canada, Springer International Publishing, 2015,

pp. 84–99.

[9] Yang J., Leskovec J. Community-affiliation graph model for overlapping network community

detection.

12th IEEE Int. Conf. on Data Mining, ICDM 2012

. 2012, pp. 1170–1175.

DOI: 10.1109/ICDM.2012.139 Available at:

http://ieeexplore.ieee.org/document/6413734

[10] Chesnokov V.O. Intersecting communities allocation in social graphs based on majoritarian

neighbours characteristic.

LOMONOSOV–2016. XXIII Mezhd. nauch. konf. studentov, aspirantov i

molodykh uchenykh

[LOMONOSOV-2016. XXIII Int. conf. of students, postgraduates and young

scientists]. Moscow, MAKS Press Publ., 2016, pp. 49–51.

[11] Clauset A., Newman M.E.J., Moore C. Finding community structure in very large networks.

Phys. Rev. E

., 2004, vol. 70, no. 6, pp. 1–6. DOI: 10.1103/PhysRevE.70.066111

Available at:

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.70.066111

[12] Rosvall M., Bergstrom C.T. Maps of random walks on complex networks reveal community

structure.

Proc. of the National Academy of Sciences

, 2008, vol. 105, no. 4, pp. 1118–1123.

DOI: 10.1073/pnas.0706851105 Available at:

http://www.pnas.org/content/105/4/1118.full

[13] Yang J., Leskovec J. Overlapping community detection at scale: a nonnegative matrix factoriza-

tion approach.

Proc. of the 6th ACM Int. Conf. on Web Search and Data Mining. WSDM '13

. New

York, 2013, pp. 587–596. DOI: 10.1145/2433396.2433471

Available at:

http://dl.acm.org/citation.cfm?doid=2433396.2433471

[14] Yang J., McAuley J.J., Leskovec J. Community detection in networks with node attributes.

2013

IEEE 13th Int. Conf. on Data Mining

. 2013, pp. 1151–1156.

[15] Leskovec J., Krevl A. SNAP datasets: stanford large network dataset collection. Stanford Net-

work Analysis Project: website. Available at:

https://snap.stanford.edu/data

(accessed 12.01.2017).

[16] Chesnokov V.O., Klyucharev P.G. Social graph community differentiated by node features

with partly missing information.

Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana

[Science and Education: Scientific Publication of BMSTU], 2015, no. 9, pp. 188–199 (in Russ.).

DOI: 10.7463/0915.0811704

Chesnokov V.O.

— assistant, post-graduate student of Information Security Department,

Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation).