Предсказание атрибутов профиля пользователя социальной сети…
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2
75
[4] Korshunov A., Beloborodov I., Buzun N., Avanesov V., et al. Social network analysis: methods
and applications.
Trudy Instituta sistemnogo programmirovaniya RAN
[Proceedings of ISP RAS],
2014, vol. 26, no. 1, pp. 439–456 (in Russ.).
Available at:
http://cyberleninka.ru/article/n/analiz-sotsialnyh-setey-metody-i-prilozheniya[5] Mislove A., Viswanath B., Gummadi K.P., Druschel P. You are who you know: inferring user
profiles in online social networks.
Proc. 3d ACM Int. Conf. on Web Search and Data Mining.
WSDM '10
. New York, ACM, 2010, pp. 251–260.
[6] Chaabane A., Acs G., Kaafar M. You are what you like! Information leakage through users’ in-
terests.
Proc. Annual Network and Distributed System Security Symposium
, 2012.
[7] Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital
records of human behavior.
Proc. of the National Academy of Sciences
, 2013, vol. 110, no. 15,
pp. 5802–5805. DOI: 10.1073/pnas.1218772110
Available at:
http://www.pnas.org/content/110/15/5802.full[8] Dougnon R.Y., Fournier-Viger P., Nkambou R. Advances in artificial intelligence.
Proc. 28th
Canadian Conf. on Artificial Intelligence
. Canada, Springer International Publishing, 2015,
pp. 84–99.
[9] Yang J., Leskovec J. Community-affiliation graph model for overlapping network community
detection.
12th IEEE Int. Conf. on Data Mining, ICDM 2012
. 2012, pp. 1170–1175.
DOI: 10.1109/ICDM.2012.139 Available at:
http://ieeexplore.ieee.org/document/6413734[10] Chesnokov V.O. Intersecting communities allocation in social graphs based on majoritarian
neighbours characteristic.
LOMONOSOV–2016. XXIII Mezhd. nauch. konf. studentov, aspirantov i
molodykh uchenykh
[LOMONOSOV-2016. XXIII Int. conf. of students, postgraduates and young
scientists]. Moscow, MAKS Press Publ., 2016, pp. 49–51.
[11] Clauset A., Newman M.E.J., Moore C. Finding community structure in very large networks.
Phys. Rev. E
., 2004, vol. 70, no. 6, pp. 1–6. DOI: 10.1103/PhysRevE.70.066111
Available at:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.70.066111[12] Rosvall M., Bergstrom C.T. Maps of random walks on complex networks reveal community
structure.
Proc. of the National Academy of Sciences
, 2008, vol. 105, no. 4, pp. 1118–1123.
DOI: 10.1073/pnas.0706851105 Available at:
http://www.pnas.org/content/105/4/1118.full[13] Yang J., Leskovec J. Overlapping community detection at scale: a nonnegative matrix factoriza-
tion approach.
Proc. of the 6th ACM Int. Conf. on Web Search and Data Mining. WSDM '13
. New
York, 2013, pp. 587–596. DOI: 10.1145/2433396.2433471
Available at:
http://dl.acm.org/citation.cfm?doid=2433396.2433471[14] Yang J., McAuley J.J., Leskovec J. Community detection in networks with node attributes.
2013
IEEE 13th Int. Conf. on Data Mining
. 2013, pp. 1151–1156.
[15] Leskovec J., Krevl A. SNAP datasets: stanford large network dataset collection. Stanford Net-
work Analysis Project: website. Available at:
https://snap.stanford.edu/data(accessed 12.01.2017).
[16] Chesnokov V.O., Klyucharev P.G. Social graph community differentiated by node features
with partly missing information.
Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana
[Science and Education: Scientific Publication of BMSTU], 2015, no. 9, pp. 188–199 (in Russ.).
DOI: 10.7463/0915.0811704
Chesnokov V.O.
— assistant, post-graduate student of Information Security Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation).