К.А. Кивва, И.В. Рудаков
44
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2
[3] Kuzmanić I., Vujović I., Šoda J. Damage detection in materials based on computer vision wave-
let algorithm, advanced structured materials. Heidelberg, Germany, Springer Cham Heidelberg,
2014, pp. 157–186.
[4] Richards B., Dayton J., Enriquez M., Gan M., Liu J., Quintana J. Obstacle avoidance system for
UAVs using computer vision.
Cal Poly Pomona Student RSCA Conference
. Pomona, California
State Polytechnic University, 2014.
[5] Guizzo E. How Google's self-driving car works. IEEE Spectrum: website.
Available at:
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works (accessed 09.01.2017).
[6]
Lepetit V. On computer vision for augmented reality.
International Symposium on Ubiquitous
Virtual Reality
. 2008, pp. 13–16. DOI: 10.1109/ISUVR.2008.10
Available at:
http://ieeexplore.ieee.org/document/4568635[7]
Forsyth D.A., Ponce J. Computer vision: a modern approach. 2nd Edition. Upper Saddle River,
New Jersey, Pearson Education, Inc., 2011. 793 p.
[8] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to algorithms. Mit Press, 2001.
1180 p. (Russ. ed.: Algoritmy: postroenie i analiz. Moscow, Vil'yams Publ., 2015. 1328 p.).
[9] Bykova V.V. Mathematical methods for the analysis of recursive algorithms.
Zhurnal SFU. Ser.
Matematika i fizika
[Journal of Siberian Federal University. Ser. Mathematics and Physics], 2008,
vol. 1, no. 3, pp. 236–246 (in Russ.).
Available at:
http://elib.sfukras.ru/bitstream/handle/2311/772/%20%20%20%20%20%20.
pdf;jsessionid=B504A2DC25BD7FACCC6562B8810DFCF0?sequence=1
[10] Murphy K., Torralba A., Eaton D., Freeman W. Object detection and localization using local
and global features. In: Toward category-level object recognition. Heidelberg, Germany, Springer
Berlin Heidelberg, 2006, pp. 382–400. DOI: 10.1007/11957959_20
Available at:
http://link.springer.com/chapter/10.1007/11957959_20[11]
Erhan D., Szegedy S., Toshev A., Anguelov D. Scalable object detection using deep neural
networks.
IEEE Conf. on Computer Vision and Pattern Recognition
. 2014, pp. 2155–2162.
DOI: 10.1109/CVPR.2014.276 Available at:
http://ieeexplore.ieee.org/document/6909673[12]
Dalal N., Triggs B. Histograms of oriented gradients for human detection.
IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition (CVPR'05)
. 2005, vol. 1,
pp. 886–893. DOI: 10.1109/CVPR.2005.177
Available at:
http://ieeexplore.ieee.org/document/1467360[13]
Corvee E. Body parts detection for people tracking using trees of histogram of oriented gradi-
ent descriptors.
7th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance
. 2010,
pp. 469–475. DOI: 10.1109/CVPR.2005.177
Available at:
http://ieeexplore.ieee.org/document/5597093[14]
Paul V., Jones M. Robust real-time face detection.
International Journal of Computer Vision
.
2004, vol. 57, no. 2, pp. 137–154. DOI: 10.1023/B
:VISI.0000013087.49260.fbAvailable at:
http://link.springer.com/article/10.1023/B%3AVISI.0000013087.49260
.fb[15]
Rokach L., Maimon O. Classification trees, data mining and knowledge discovery handbook.
New York, Springer US, 2010, pp. 149–151.
Kivva K.A.
— assistant of Computer Software and Information Technology Department, Bau-
man Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian
Federation).