Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

К.А. Кивва, И.В. Рудаков

44

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

[3] Kuzmanić I., Vujović I., Šoda J. Damage detection in materials based on computer vision wave-

let algorithm, advanced structured materials. Heidelberg, Germany, Springer Cham Heidelberg,

2014, pp. 157–186.

[4] Richards B., Dayton J., Enriquez M., Gan M., Liu J., Quintana J. Obstacle avoidance system for

UAVs using computer vision.

Cal Poly Pomona Student RSCA Conference

. Pomona, California

State Polytechnic University, 2014.

[5] Guizzo E. How Google's self-driving car works. IEEE Spectrum: website.

Available at:

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/

how-google-self-driving-car-works (accessed 09.01.2017).

[6]

Lepetit V. On computer vision for augmented reality.

International Symposium on Ubiquitous

Virtual Reality

. 2008, pp. 13–16. DOI: 10.1109/ISUVR.2008.10

Available at:

http://ieeexplore.ieee.org/document/4568635

[7]

Forsyth D.A., Ponce J. Computer vision: a modern approach. 2nd Edition. Upper Saddle River,

New Jersey, Pearson Education, Inc., 2011. 793 p.

[8] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to algorithms. Mit Press, 2001.

1180 p. (Russ. ed.: Algoritmy: postroenie i analiz. Moscow, Vil'yams Publ., 2015. 1328 p.).

[9] Bykova V.V. Mathematical methods for the analysis of recursive algorithms.

Zhurnal SFU. Ser.

Matematika i fizika

[Journal of Siberian Federal University. Ser. Mathematics and Physics], 2008,

vol. 1, no. 3, pp. 236–246 (in Russ.).

Available at:

http://elib.sfukras.ru/bitstream/handle/2311/772/%20%20%20%20%

20%20.

pdf;jsessionid=B504A2DC25BD7FACCC6562B8810DFCF0?sequence=1

[10] Murphy K., Torralba A., Eaton D., Freeman W. Object detection and localization using local

and global features. In: Toward category-level object recognition. Heidelberg, Germany, Springer

Berlin Heidelberg, 2006, pp. 382–400. DOI: 10.1007/11957959_20

Available at:

http://link.springer.com/chapter/10.1007/11957959_20

[11]

Erhan D., Szegedy S., Toshev A., Anguelov D. Scalable object detection using deep neural

networks.

IEEE Conf. on Computer Vision and Pattern Recognition

. 2014, pp. 2155–2162.

DOI: 10.1109/CVPR.2014.276 Available at:

http://ieeexplore.ieee.org/document/6909673

[12]

Dalal N., Triggs B. Histograms of oriented gradients for human detection.

IEEE Computer

Society Conf. on Computer Vision and Pattern Recognition (CVPR'05)

. 2005, vol. 1,

pp. 886–893. DOI: 10.1109/CVPR.2005.177

Available at:

http://ieeexplore.ieee.org/document/1467360

[13]

Corvee E. Body parts detection for people tracking using trees of histogram of oriented gradi-

ent descriptors.

7th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance

. 2010,

pp. 469–475. DOI: 10.1109/CVPR.2005.177

Available at:

http://ieeexplore.ieee.org/document/5597093

[14]

Paul V., Jones M. Robust real-time face detection.

International Journal of Computer Vision

.

2004, vol. 57, no. 2, pp. 137–154. DOI: 10.1023/B

:VISI.0000013087.49260.fb

Available at:

http://link.springer.com/article/10.1023/B%3AVISI.0000013087.

49260

.fb

[15]

Rokach L., Maimon O. Classification trees, data mining and knowledge discovery handbook.

New York, Springer US, 2010, pp. 149–151.

Kivva K.A.

— assistant of Computer Software and Information Technology Department, Bau-

man Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian

Federation).