Previous Page  10 / 13 Next Page
Information
Show Menu
Previous Page 10 / 13 Next Page
Page Background

К.А. Кивва, И.В. Рудаков

42

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 2

2.

Silveira J., Ferreira M.J., Santos C., Martins T.

Computer vision techniques applied to the quality

control of ceramic plates // Proc. IEEE international Conference on Industrial Technology.

Gippsland: ICIT, 2009.

URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.973.1308&rep=rep1&type=pdf

(дата обращения: 15.01.2017).

3.

Kuzmanić I., Vujović I., Šoda J.

Damage detection in materials based on computer vision wavelet

algorithm, advanced structured materials. Heidelberg, Germany: Springer Cham Heidelberg, 2014.

P. 157–186.

4.

Obstacle

avoidance system for UAVs using computer vision / Blin Richards, John Dayton,

Miguel Enriquez, Mathew Gan, James Liu, Jordan Quintana // Cal Poly Pomona Student RSCA

Conference. Pomona: California State Polytechnic University, 2014.

5.

Guizzo E.

How Google's self-driving car works // IEEE Spectrum: веб-сайт.

URL:

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/

how-google-self-driving-car-works (дата обращения: 09.01.2017).

6.

Lepetit V.

On computer vision for augmented reality // International Symposium on Ubiquitous

Virtual Reality. 2008. P. 13–16. DOI: 10.1109/ISUVR.2008.10

URL:

http://ieeexplore.ieee.org/document/4568635

7.

Forsyth D.A., Ponce J.

Computer vision: a modern approach. 2nd Edition. Upper Saddle River,

New Jersey: Pearson Education, Inc., 2011. 793 с.

8.

Кормен Т.Х., Лейзерсон Ч.И., Ривест Р.Л., Штайн К.

Алгоритмы: построение и анализ.

М.: Вильямс, 2015. 1328 с.

9.

Быкова В.В.

Математические методы анализа рекурсивных алгоритмов // Журнал СФУ.

Сер. Математика и физика. 2008. Т. 1. № 3. С. 236–246.

URL:

http://elib.sfukras.ru/bitstream/handle/2311/772

%20%20%20%20%20%20.pdf;jsessionid=B504A2DC25BD7FACCC6562B8810DFCF0?sequence=1

10.

Murphy К., Torralba А., Eaton D., Freeman W.

Object detection and localization using local

and global features // Toward category-level object recognition. Heidelberg, Germany: Springer

Berlin Heidelberg, 2006. С. 382–400. DOI: 10.1007/11957959_20

URL:

http://link.springer.com/chapter/10.1007/11957959_20

11.

Erhan D., Szegedy С., Toshev А., Anguelov D.

Scalable object detection using deep neural net-

works // IEEE Conference on Computer Vision and Pattern Recognition. 2014. P. 2155–2162.

DOI: 10.1109/CVPR.2014.276 URL:

http://ieeexplore.ieee.org/document/6909673

12.

Dalal N., Triggs B.

Histograms of oriented gradients for human detection // IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 2005. Vol. 1.

P. 886–893. IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR'05) DOI: 10.1109/CVPR.2005.177 URL:

http://ieeexplore.ieee.org/document/1467360

13.

Corvee E.

Body parts detection for people tracking using trees of histogram of oriented gradient

descriptors // 7th IEEE International Conference on Advanced Video and Signal Based Surveil-

lance. 2010. P. 469–475. DOI: 10.1109/AVSS.2010.51

URL:

http://ieeexplore.ieee.org/document/5597093

14.

Paul V., Jones M.

Robust real-time face detection // International Journal of Computer Vision.

2004. Vol. 57. No. 2. P. 137–154. DOI: 10.1023/B

:VISI.0000013087.49260.fb

URL:

http://link.springer.com/article/10.1023/B%3AVISI.0000013087.49260.fb

15.

Rokach L., Maimon O.

Classification trees, data mining and knowledge discovery handbook.

New York: Springer US, 2010. P. 149–151.