|

Calculation of the centered reflecting objective with eccentrically located image field

Authors: Zavarzin V.I., Li A.V. Published: 08.04.2016
Published in issue: #2(107)/2016  
DOI: 10.18698/0236-3933-2016-2-103-116

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: reflecting objective, objective with eccentrically located image field, third-order aberration

Reflecting objectives with eccentrically located image field are widely used in optoelectronic equipment for the remote Earth sensing and are prospective for using in hyperspectral equipment, which requires high image quality in a wide spectral range and large angular field. We consider one of the most common and simple form of the reflecting objective with eccentrically located field image - a three-mirror lens that can be applied both independently, and as a basis (catadicptric) lens when creating mirror-lens optical systems. Consequently, we offer the methods for calculating the aberration and the analysis of the effectiveness of aspheric surfaces on the lens. As a result, we give an example of calculating the objective using the analytical dependencies.

References

[1] Preti G., Cisbani A., De Cosmo V., Galeazzi C., Labate D., Melozzi M. Hyperspectral Instruments for Earth Observation. Proceedings of the 7th ICSO (International Conference on Space Optics). Toulouse, France, 2008, Oct. 14-17.

[2] Kaiser S., Sang B., Schubert J., Hofer S., Stuffier T. Compact prism spectrometer of pushbroom type for hyperspectral imaging. Proc. SPIE 7100, Optical Design and Engineering III, 710014, 2008, September 27. DOI: 10.1117/12.797177.

[3] Mouroulis P., Sellar R., Wilson D.W., Shea J.J., Green R.O. Optical design of a compact imaging spectrometer for planetary mineralogy. Opt. Eng. 0001;46(6):063001-063001-9, 2007, June 29. DOI: 10.1117/1.2749499

[4] Arkhipov S.A., Senik B.N., Zavarzin V.I. Developing and fabricating optical systems for a prospective remote-earth-probe spacecraft. Journal of Optical Technology, 2013, vol. 80, iss. 1, pp. 25-27. DOI: 10.1364/JOT.80.000025

[5] Arkhipov S.A., Zavarzin V.I., Zavarzina V.V., Kravchenko S.O., Morozov S.A., Senik B.N. Zerkal’no-linzovyy ob’ektiv (varianty) [Catadioptric lens (versions)]. Patent RF no. 2461030. 10.09.2012.

[6] Arkhipov S.A., Zavarzin V.I., Morozov S.A., Li A.V., Lin’ko V.M., Tarasov A.P. Zerkal’nyy avtokollimatsionnyy spektrometr [Autocollimation Mirror Spectrometer]. Patent RF no. 2521249. 27.06.2014.

[7] Arkhipov S.A., Zavarzin V.I., Li A.V., Morozov S.A., Lin’ko V.M., Kravchenko S.O. Zerkal’no-linzovyy ob’ektiv [Catadioptric lens]. Patent RF no. 2547170. 10.09.2015.

[8] Zakaznov N.P., Kiryushin S.I., Kuzichev V.I. Teoriya opticheskikh system [The theory of optical systems]. Moscow, Mashinostroenie Publ., 1992. 448 p.

[9] Zavarzin V.I. Selecting the Surface to Be Aspherized. Tr. MVTU im. N.E. Baumana [Proc. Bauman MSTU], 1985, no. 431, pp. 98-105 (in Russ.).

[10] Malacara D., ed. Optical Shop Testing. N.Y., John Wiley & Sons, Inc., Publication, 2007. 888 p.

[11] Arkhipov S.A., Zavarzin V.I., Malykhin V.A., Morozov S.A. Alignment and Calibration of Long-Focus Three-Mirror Lens with Eccentric Position of Image Field. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2009, no. 4, pp. 24-36 (in Russ.).

[12] Zavarzin V.I., Li A.V. Quality Control of Large-Scale Mirror Objectives with Eccentric Image Field. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 6, pp. 39-48 (in Russ.).