Modification of the Long-Focus Optical Design of the Tair Lens in Order to Increase Manufacturability and Improve Optical Quality
Authors: Eshmakov R.E. | Published: 14.04.2025 |
Published in issue: #1(150)/2025 | |
DOI: | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes | |
Keywords: optics, optimization, optical system, lens, meniscus corrector, optical materials, development, long-focus achromatic systems |
Abstract
The article optimizes the optical scheme of a long-focus achromate with a meniscus corrector Tair (F = 400 mm, 1:4.5) by dividing the labor-intensive meniscus into two simpler lenses and replacing optical materials. The analysis of the dispersion properties of optical glasses from the catalogs of LZOS JSC (Russia) and CDGM (China), which are similar in parameters to those used in the optical scheme of the corrector Tair, is carried out. These materials and their combinations make it possible to improve the optical quality of the original lens. The influence of the choice of lens materials for the Tair lens using the catalogs of LZOS JSC and CDGM on the degree of correction of chromatic aberrations and image quality, described in terms of the modulation transmission function for the visible wavelength range, is investigated. The characteristics of lenses using both the original optical scheme and a modified one using various optical materials are compared. A simplified version of the Tair type lens is proposed, which has a significant advantage in optical characteristics compared to other versions
Please cite this article in English as:
Eshmakov R.E. Modification of the long-focus optical design of the Tair lens in order to increase manufacturability and improve optical quality. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2025, no. 1 (150), pp. 50--70 (in Russ.). EDN: WHGUCF
References
[1] Kingslake R., Johnson R.B. Lens design fundamentals. Academic Press, 2009.
[2] Zhang Y., Gross H. Systematic design of microscope objectives. Part I: system review and analysis. Adv. Opt. Techn., 2019, vol. 8, no. 5, pp. 313--347. DOI: https://doi.org/10.1515/aot-2019-0002
[3] Jamieson T.H. Thick meniscus field correctors. Appl. Opt., 1982, vol. 21, iss. 15, pp. 2799--2803. DOI: https://doi.org/10.1364/AO.21.002799
[4] Volosov D.S., Shakhnovich A.E., Fakhretdinova R.G. Dvukhlinzovyy obektiv s planastigmaticheskim kompensatorom [Doublet lens with plan-astigmatic compensator]. Patent SSSR 78122. Appl. 03.11.1944, publ. 01.01.1949 (in Russ.).
[5] Lishnevskaya E.B. Fotograficheskie i proektsionnye obektivy, razrabotannye v GOI [Photographic and projection lenses designed in GOI]. Leningrad, GOI Publ., 1963.
[6] Maksutov D.D. Astronomicheskaya optika [Astronomy optics]. Leningrad, Nauka Publ., 1979.
[7] Richter R. Photographic teleobjective. Patent US2239538. Appl. 08.03.1940, publ. 22.04.1941.
[8] Lohberg O.-W., Ulbrich H. Photographisches teleobjektiv. Patent DE1120735B. Appl. 28.12.1961.
[9] Tautz V., Benedix G. Fuenfgliedriges fotografisches objektiv. Patent DD206240A1. Appl. 01.06.1982, publ. 18.01.1984.
[10] Kidger M., Leamy P. The existence of local minima in lens design. International Lens Design, 1990, pp. 69--76. DOI: https://doi.org/10.1364/ILD.1990.LMC2
[11] Smith W.J. The problem of the concentric meniscus element: a possible solution to the lens designer’s dilemma. Opt. Eng., 1988, vol. 27, iss. 12, art. 121039. DOI: https://doi.org/10.1117/12.7978673
[12] Tsarevskiy E.N., ed. Svoystva i razrabotka novykh opticheskikh stekol [Properties and development of new optical glasses]. Leningrad, Mashinostroenie Publ., 1977.
[13] Fleming J.W. Supplement 2: optical materials. Section 2. Optical glasses. In: Handbook of Optical Materials. CRC Press, 2003, pp. 234--305.
[14] Fiorentin P., Bertolo A., Cavazzani S., et al. Laboratory characterisation of a commercial RGB CMOS camera for measuring night sky brightness. Remote Sens., 2023, vol. 15, iss. 17, art. 4196. DOI: https://doi.org/10.3390/rs15174196
[15] Kingslake R. Position of best focus of a lens in the presence of spherical aberration. In: National Bureau of Standards circular. US National Bureau of Standards, 1954, pp. 259--274.
[16] Sasaki K., Kurokawa K., Makita S., et al. Extended depth of focus adaptive optics spectral domain optical coherence tomography. Biomed. Opt. Express, 2012, vol. 3, iss. 10, pp. 2353--2370. DOI: https://doi.org/10.1364/BOE.3.002353
[17] Richter R. Projection objective. Patent US1843519A. Appl. 27.03.1931, publ. 02.02.1932.
[18] Welford W.T. Aberrations of optical systems. CRC Press, 1986.
[19] Seppala L.G. The IODC 1998 lens design problem revisited: a strategy for simplifying glass choices in an apochromatic design. 2nd Int. Conf. on Optical Design and Fabrication, 2000, preprint UCRL-JC-139510.
[20] Zhang Y., Gross H. Systematic design of microscope objectives. Part II: lens modules and design principles. Adv. Opt. Techn., 2019, vol. 8, no. 5, pp. 349--384. DOI: https://doi.org/10.1515/aot-2019-0013