|

Proposals for the Development of High-Sensitivity Surveillance Cameras

Authors: Drynkin V.N., Pavlov Yu.V., Tsareva T.I. Published: 13.04.2025
Published in issue: #1(150)/2025  
DOI:

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: hardware binning, increased sensitivity of video cameras, increased spatial resolution, three-dimensional spatio-temporal filtering, signal-to-noise ratio

Abstract

The article proposes an algorithm for estimating the sensitivity of video cameras to the signal-to-noise ratio based on the analysis of the spectral density distribution of signal power and noise in real video images. The algorithm is being tested on a large number of real visible range images obtained at different times of the year and at different times of the day. A good correspondence of the obtained signal-to-noise values to the illumination level of the scene is shown in comparison with other algorithms. The hardware implementation of the algorithm directly in the video camera will allow you to automatically turn on the sensitivity mode when the signal-to-noise level drops below a certain threshold when the illumination of the scene decreases. As a mode of increased sensitivity, a method based on hardware binning with restoration of spatial resolution is proposed. To ensure the restoration of spatial resolution, binning in neighboring video frames is carried out with a diagonal shift of at least one pixel of the photosensitive matrix of the video camera. In this case, a space-time grid of pixels is formed, interspersed with zero rows and columns, in the form of a checkerboard, which is then subjected to three-dimensional interpolation filtering. According to the experimental results, depending on the frequency of binning, the signal-to-noise ratio increases by 10--15 dB. The pixel size of the video frames is fully restored, and the spatial resolution is restored to 80% of the original with 2 × 2 binning and at least 40 % with 4 × 4 binning

Please cite this article in English as:

Drynkin V.N., Pavlov Yu.V., Tsareva T.I. Proposals for the development of high-sensitivity surveillance cameras. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2025, no. 1 (150), pp. 18--33 (in Russ.). EDN: XWVLFD

References

[1] Drynkin V.N., Tsareva T.I. Evaluation of video cameras sensitivity. Tsifrovaya obrabotka signalov [Digital Signal Processing], 2024, no. 3, pp. 50--54 (in Russ.). EDN: GYAJLS

[2] Timofeev V. How to choose a video camera? Alternative method. Algoritm bezopasnosti, 2007, no. 6, pp. 54--55 (in Russ.). EDN: NXVNAT

[3] Govenko A., Kozhemyakin A., Tyschuk Yu. [The laboratory bench for the research webcams]. Dostizheniya i perspektivy innovatsiy i tekhnologiy. Mater. VIII Vseros. nauch.-prakt. konf. studentov, aspirantov i molodykh uchenykh [Recent Achievements and Prospects of Innovations and Technologies. Proc. VIII Russ. Sci.-Pract. Conf. of Students, Post-Graduates and Young Scientists]. Kerch, KGMTU Publ., 2019, pp. 103--106 (in Russ.). EDN: XVEECT

[4] Sergunova K.A. Issledovanie i razrabotka metodov i sredstv kontrolya kharakteristik magnitno-rezonansnykh i rentgenovskikh kompyuternykh tomografov. Dis. kand. tekh. nauk [Research and development of methods and means of monitoring the characteristics of magnetic resonance and X-ray computed tomographs. Cand. Sc. (Eng.) Diss.]. St. Petersburg, LETI Publ., 2019 (in Russ.).

[5] Starchenko A.N., Filippov V.G., Yugay Yu.A. Sensitivity temperature dependence research of tv-cameras based on silicon matrixes. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2017, vol. 17, no. 4, pp. 628--634 (in Russ.). DOI: https://doi.org/10.17586/2226-1494-2017-17-4-628-634

[6] Drynkin V.N., Tsareva T.I., Pavlov Yu.V., et al. Method for increasing the sensitivity of video cameras based on binning with restoration of spatial resolution. Tsifrovaya obrabotka signalov [Digital Signal Processing], 2020, no. 4, pp. 58--63 (in Russ.). EDN: DOIHSL

[7] Min D.B., Korotaev V.V., Timofeev A.N., et al. Influence of stand module characteristics on the error in determining parameters of video cameras with matrix CMOS photodetectors. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2020, vol. 63, no. 1, pp. 46--54 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2020-63-1-46-54

[8] Sviridov V.P. The influence of television camera parameters on image recognition in security systems. Vestnik SamGTU. Ser. Tekhnicheskie nauki [Vestnik of Samara State Technical University. Technical Sciences Series], 2005, no. 33, pp. 191--194 (in Russ.). EDN: JXKNOZ

[9] Boyarchuk M.A., Nekrasov V.V. [Review of algorithms for estimating the signal-to-noise ratio from satellite images]. Mater. pyatoy Mezhdunar. nauch.-tekh. konf. "Aktualnye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli" [Proc 5th Int. Sci.-Tech. Conf. Actual Problems of Space Systems Design for Remote Sensing of the Earth], 2017, pp. 131--141 (in Russ.).

[10] Lapshenkov E.M. No reference estimation of noise level of digital image is based on harmonic analysis. Kompyuternaya optika [Computer Optics], 2012, no. 3, vol. 36, pp. 439--447 (in Russ.). EDN: PDCDGP

[11] Fan L., Zhang F., Fanet H., et al. Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art, 2019, vol. 2, art. 7. DOI: https://doi.org/10.1186/s42492-019-0016-7

[12] Katulev A.N., Khramichev A.A., Yagolnikov S.V. Tsifrovaya obrabotka 2D slabokontrastnykh izobrazheniy, formiruemykh optiko-elektronnym priborom v slozhnykh fonovykh usloviyakh [Digital processing of 2D low-contrast images generated by an optical-electronic device in difficult background conditions]. Moscow, Radiotekhnika Publ., 2018.

[13] Maltsev G.N. The choice of images registration mode in optical information systems with matrix photodetectors. Informatsionno-upravlyayushchie sistemy [Information and Control Systems], 2004, no. 2, pp. 2--5 (in Russ.). EDN: KYOKDX

[14] Tsukkerman I.I., ed. Tsifrovoe kodirovanie televizionnykh izobrazheniy [Digital coding of television images]. Moscow, Radio i svyaz Publ., 1981.

[15] Borodyanskiy A.A., Drynkin V.N. Vertikalno-vremennaya filtratsiya v sistemakh televideniya povyshennoy chetkosti [Vertical-time filtering in high-definition television systems]. Ryazan, Ryazan Radio Engineering Inst. Publ., 1986.

[16] Drynkin V.N. Mnogomernaya tsifrovaya filtratsiya v optiko-elektronnykh sistemakh videonablyudeniya [Multidimensional digital filtering in optical-electronic video surveillance systems]. Moscow, GosNIIAS Publ., 2024.

[17] Gorbachev V.A., Grodzitskiy L.V., Danilov S.Yu., et al. Baza dannykh registratsii obektov, poluchennykh s ispolzovaniem programmnykh imitatorov raspredelennogo monitoringa na osnove gruppy bespilotnykh letatelnykh apparatov s tselevymi poleznymi nagruzkami v vidimom, infrakrasnom i radiolokatsionnom diapazonakh [Registration database of objects obtained using software simulators of distributed monitoring based on a group of unmanned aerial vehicles with target payloads in the visible, infrared and radar ranges]. BD 2023621349. Appl. 11.04.2023, publ. 27.04.2023 (in Russ.).

[18] Titukhin N.A., Kustikova M.A. Research on ways to adjust sensitivity and expand the dynamic range of video cameras to ensure operation in difficult conditions. Almanakh nauchnykh rabot molodykh uchenykh Universiteta ITMO, 2016, vol. 5, pp. 93--95 (in Russ.). EDN: ZOPGNB

[19] Drynkin V.N., Nabokov S.A., Tsareva T.I. Non-orthogonal sampling as the basis for video data compression and reconstruction. J. Comput. Syst. Sci. Int., 2019, vol. 58, no. 3, pp. 454--466. DOI: https://doi.org/10.1134/S1064230719030080

[20] Borodyanskiy A.A., Drynkin V.N. Synthesis of multidimensional recursive-non-recursive filters. Radiotekhnika, 1986, no. 4, pp. 47--51 (in Russ.). EDN: VAKXTB

[21] Drynkin V.N., Nabokov S.A., Tsareva T.I. Video images compression and restoration methods based on optimal sampling. Comput. Opt., 2019, vol. 43, no. 1, pp. 115--122. DOI: https://doi.org/10.18287/2412-6179-2019-43-1-115-122

[22] Drynkin V.N., Tsareva T.I., Pavlov Yu.V. Sposob povysheniya chuvstvitelnosti i chastoty kadrov videokamer [Method for increasing sensitivity and frame rate of video cameras]. Patent RU 2757667. Appl. 02.12.2020, publ. 20.10.2021 (in Russ.).