Technique to Increase the Adaptive Optical System Energy Efficiency
Authors: Sakharov A.A., Zhivotovsky I.V., Karasik V.Ye., Mukhina Ye.Ye. | Published: 27.01.2025 |
Published in issue: #4(149)/2024 | |
DOI: | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes | |
Keywords: adaptive optics, electron-image tube, wavefront sensor, turbulence, atmosphere optics, light and energy computation, microlens raster |
Abstract
The paper presents methodology for the light and energy computation of a wavefront sensor with the brightness amplifier and a technique to obtain a primary hartmanogram with minimum error for sucha sensor. Requirements for technical characteristics of the video cameras used in the adaptive optical systems are analyzed, and the key requirements for them are discussed. The paper shows necessity and advantages of using the electron-image tube as part of a wavefront sensor. It provides the signal/noise ratio computation for sensors based on the high-speed video cameras with and without a bright-ness amplifier. The calculations reveal that intro-ducing an electron-image tube in the adaptive optical systems used in the horizontal routes significantly increases their operation range. It is shown that the developed technique of light and energy computation identifies advantages of the adaptive optical systems with wavefront sensors based on the electron-image tube. The method for obtaining a reference hartmanogram makes it possible to receive a wavefront with a minimum error relative to the mathematically computed ideal. The paper notes that the presented study results indicate a possibility of obtaining a reference hartmanogram under conditions close to operation in routes with increased turbulence, which improves the adaptive optical system quality
Please cite this article in English as:
Sakharov A.A., Zhivotovsky I.V., Karasik V.E., et al. Technique to increase the adaptive optical system energy efficiency. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 4 (149), pp. 76--91 (in Russ.). EDN: ULBDDF
References
[1] Nikitin A., Sheldakova J., Kudryashov A., et al. Hartmannometer versus Fizeau Interferometer: advantages and drawbacks. Proc. SPIE, 2015, vol. 9369, art. 936905. DOI: https://doi.org/10.1117/12.2085263
[2] Platt B., Shack R.J. History and principles of Shac --- Hartmann wavefront sensing. J. Refract. Surg., 2001, vol. 17, no. 5, pp. 573--577. DOI: https://doi.org/10.3928/1081-597X-20010901-13
[3] Primot J. Theoretical description of Shack --- Hartmann wavefront sensor. Opt. Commun., 2003, vol. 222, no. 1-6, pp. 81--92. DOI: https://doi.org/10.1016/S0030-4018(03)01565-7
[4] Babcock H.W. The possibility of compensating atmospheric seeing. PASP, 1953, vol. 65, no. 368, pp. 229--236. DOI: https://doi.org/10.1086/126606
[5] Tatarskiy V.I. Rasprostranenie voln v turbulentnoy atmosphere [Wave propagation in a turbulent atmosphere]. Moscow, Nauka Publ., 1967.
[6] Tyson R.K. Principles of adaptive optics. New York, Academic Press, 1998.
[7] Shanin O.I. Adaptivnye opticheskie sistemy korrektsii naklonov. Rezonansnaya adaptivnaya optika [Adaptive optical systems for tilt correction. Resonant adaptive optics]. Moscow, Tekhnosfera Publ., 2013.
[8] Taranenko V.G., Shanin O.I. Adaptivnaya optika v priborakh i ustroystvakh [Adaptive optics in instruments and devices]. Moscow, TsNIIatominform Publ., 2005.
[9] Cornelissen S., Hartzell A., Stewart J., et al. MEMS deformable mirrors for astronomical adaptive optics. 1st AO4ELT Conf. --- Adaptive Optics for Extremely Large Telescopes, 2010, art. 06003. DOI: https://doi.org/10.1051/ao4elt/201006003
[10] Galaktionov I., Nikitin A., Sheldakova J., et al. Focusing of a laser beam passed through a moderately scattering medium using phaseonly spatial light modulator. Photonics, 2022, vol. 9, no. 5, art. 296. DOI: https://doi.org/10.3390/photonics9050296
[11] Lukin V.P. Atmosfernaya adaptivnaya optika [Atmospheric adaptive optics]. Novosibirsk, Nauka Publ., 1986.
[12] Soloviev A., Kotov A., Perevalov S., et al. Adaptive system for wavefront correction of the PEARL laser facility. Quantum Electron., 2022, vol. 50, no. 12, pp. 1115--1122. DOI: https://doi.org/10.1070/QEL17446
[13] Segel M., Zepp A., Anzuola E., et al. Optimization of wavefront-sensorless adaptive optics for horizontal laser beam propagation in a realistic turbulence environment. Proc. SPIE, 2017, vol. 10408, art. 104080E. DOI: https://doi.org/10.1117/12.2276240
[14] Karasik V.E., Orlov V.M. Lokatsionnye lazernye sistemy videniya [Localization laser vision systems]. Moscow, Bauman MSTU Publ., 2013.
[15] Tarasov V.V., Yakushenkov Yu.G. Dvukh- i mnogodiapazonnye optikoelektronnye sistemy s matrichnymi priemnikami izlucheniya [Two- and multi-band optoelectronic systems with matrix radiation receivers.]. Moscow, Universitetskaya kniga Publ., Logos Publ., 2011.
[16] Holst G. Electro-optical imaging system performance. Washington, SPIE Optical Engineering Press, 2003.
[17] Hatheway A.E., ed. Actuator technology and application. Inter. Symp. Optical Sc., Eng., Instr., 1996, vol. 2865.
[18] Khardi D.U. Active optics: a new light beam control technique. TIIER, 1978, vol. 66, no. 6, c. 31--85 (in Russ.).
[19] Trubitsina E.V., Zhivotovskiy I.V., Sakharov A.A. Adjustment of device with wavefront sensor using accuracy characteristics of wavefront sensor. Contenant, 2019, no. 3-2, pp. 50--62 (in Russ.).
[20] Baryshnikov N.V., Denisov D.G., Dzhumamuratova A.A., et al. Development and research of an optoelectronic device based on a wavefront sensor to control the form parameters of intraocular lenses. Meas. Tech., 2019, vol. 62, no. 1, pp. 31--35. DOI: https://doi.org/10.1007/s11018-019-01581-6