Development of a Method to Assess the Color Parameters Spatial Distribution in the MacAdam Steps
Authors: Andreeva M.V., Soldatkin V.S., Tuev V.I., Kichuk S.N. | Published: 22.03.2024 |
Published in issue: #1(146)/2024 | |
DOI: | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes | |
Keywords: LED emitting diode, luminophor, luminiferous composition, luminous flux, luminous efficiency, chromaticity coordinates, color rendering index, correlated color temperature |
Abstract
The paper presents a method to assess uniformity of the chromaticity coordinates spatial distribution in the light-emitting diodes. The method differs by introducing mathematical apparatus of the MacAdam ellipses and makes it possible to numerically assess spatial distribution of these parameters. It includes the following phases: 1) manufacture of the luminiferous composition; 2) luminiferous composition application and production of the LED models; 3) measuring luminous flux, luminous efficiency and color rendering index; 4) regression analysis of the results obtained and samples selection; 5) measuring the selected samples chromaticity in the coordinate space; 6) obtaining the approximating expression and finding the approximation errors; 7) color deviation computation in the MacAdam steps. The developed method was tested on LEDs with three luminiferous samples. Chromaticity coordinates spatial deviations in the MacAdam ellipses steps amounted to 4 units, which corresponds to the visual discrimination boundary in color and suggests further research to increase the color spatial uniformity. It was established that for the LEDs based on the GaN/InGaN crystals in the SMD 5030 housing, approximation by a fourth-degree polynomial of the chromaticity coordinates dependence on the emission angle allowed an error of no more than 4.5 %. The method could be useful to developers and manufacturers of the LEDs
Please cite this article in English as:
Andreeva M.V., Soldatkin V.S., Tuev V.I., et al. Development of a method to assess the color parameters spatial distribution in the MacAdam steps. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2024, no. 1 (146), pp. 4--18 (in Russ.). EDN: AUMIYI
References
[1] Fairchild M.D. Color appearance models. Wiley, 2005.
[2] Domasev M.V., Gnatyuk S.P. Tsvet. Upravlenie tsvetom, tsvetovye raschety i izmereniya [Color. Color management, color calculations and measurements]. St. Petersburg, Piter Publ., 2009.
[3] Bergh A.A., Dean P.J. Light-emitting diodes. Oxford, Clarendon Press, 1976.
[4] Klyushnikov S.V. Svetodiody v osveshchenii [LEDs in lighting]. Moscow, MIEE Publ., 2014.
[5] Trotsiuk L.L., Ton E.S., Tsvirko V.I., et al. Photoluminescent properties of phosphor based on perovskite CsPbBr3 nanocrystals combined with violet leds. J. Appl. Spectrosc., 2022, vol. 89, no. 5, pp. 869--873. DOI: https://doi.org/10.1007/s10812-022-01440-3
[6] Kazankin O.N., Markovskiy L.Ya., Mironov I.A. Neorganicheskie lyuminofory [Inorganic phosphors]. Moscow, Khimiya Publ., 1975.
[7] Devyatykh E.V., Dadonov V.F. Lyuminestsentnye lampy. Lyuminofory i lyumi-nofornye pokrytiya [Fluorescent lamps. Phosphors and phosphor coatings]. Saransk, MRSU Publ., 2007.
[8] Narukawa Y., Ichikawa M., Sanga D., et al. White light emitting diodes with super-high luminous efficacy. J. Phys. D: Appl. Phys., 2010, vol. 43, no. 35, art. 354002. DOI: https://doi.org/10.1088/0022-3727/43/35/354002
[9] Tuev V.I., Soldatkin V.S., Andreeva M.V., et al. Investigation of phosphor compositions for led filament bulb. J. Phys.: Conf. Ser., 2018, vol. 1115, no. 5, art. 052012. DOI: https://doi.org/10.1088/1742-6596/1115/5/052012
[10] Stokes G.G. Uber die Veranderung der Brechbarkeit des Lichts. Ann. Phys. B, 1852, vol. 163, iss. 11, pp. 480--490. DOI: https://doi.org/10.1002/andp.18521631109
[11] Lisitsyn V.M., Soshchin N.P., Yang yang Y., et al. Photoluminescence characteristics of Yag:Ce, Gd based phosphors with different prehistories. Russ. Phys. J., 2017, vol. 60, no. 5, pp. 862--869. DOI: https://doi.org/10.1007/s11182-017-1150-3
[12] Schubert E.F. Light-emitting diodes. Cambridge Univ. Press, 2006.
[13] Soshchin N.P. Light-emitting diode + powder phosphor = new quality of light. Svetodiody i lazery, 2002, no. 1-2, pp. 60--63 (in Russ.).
[14] Ivchenko G.I., Medvedev Yu.I. Vvedenie v matematicheskuyu statistiku [Introduction to mathematical statistics]. Moscow, LKI Publ., 2009.
[15] Yulaeva Yu.V., Khomyakov A.Yu., Tuev V.I. [Mathematical modeling of the spatial distribution of the luminous intensity of a filamentous emitter for LED lamps]. Elektronnye sredstva i sistemy upravleniya. Mater. dokl. XVI Mezhdunar. nauch.-prakt. konf. Ch. 1 [Electronic Means and Control Systems. Proc. XVI Int. Sci.-Pract. Conf. P. 1]. Tomsk, V-Spektr Publ., 2020, pp. 241--245 (inRuss.).
[16] MacAdam D.L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am., 1942, vol. 32, iss. 5, pp. 247--274. DOI: https://doi.org/10.1364/JOSA.32.000247
[17] Shaw M., Fairchild M.D. Evaluating the 1931 CIE color-matching functions. Color Res. Appl., 2002, vol. 27, iss. 5, pp. 316--329. DOI: https://doi.org/10.1002/col.10077
[18] Galochkin V.T. Ekonometrika [Econometrics]. Moscow, Yurayt Publ., 2017.
[19] Brown W.R.J., MacAdam D.L. Visual sensitivities to combined chromaticity and luminance differences. J. Opt. Soc. Am., 1949, vol. 39, iss. 10, pp. 808--834. DOI: https://doi.org/10.1364/JOSA.39.000808
[20] Wyszecki G., Fielder G.H. New color-matching ellipses. J. Opt. Soc. Am., 1971, vol. 61, iss. 9, pp. 1135--1152. DOI: https://doi.org/10.1364/JOSA.61.001135