|

Highly Efficient Pulsed-Operation Nd:Glass Quantron for a Large-Aperture Laser

Authors: Desyatskov V.A., Popov V.I., Stepanov A.V. Published: 28.09.2018
Published in issue: #5(122)/2018  
DOI: 10.18698/0236-3933-2018-5-4-14

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: Nd:Glass, energy efficiency, population inversion, lamp pumping

The paper considers specifics of developing a highly efficient pulsed-operation Nd:Glass quantron that employs lamp pumping and may be used in a powerful large-aperture laser. We combined a 920 mm long gain element with a diameter of 45 mm and a part of a quantron designed to use standard 6...7 mm diameter lamps set up for pulsed operation, and compared spatial power distribution parameters of the resulting design with parameters of a quantron featuring INP-16/850 lamps. Experimental investigation results showed that the quantron under development should noticeably surpass its prototype in terms of the metrics considered, that is, energy efficiency and uniformity of population inversion distribution in the gain element

References

[1] Ananyev Yu.A., Vinokurov G.N., Kovalchuk N.A., Sventitskaya N.A., Sherstobitov V.E. Telescopic-resonator laser. JETP, 1970, vol. 31, no. 3, pp. 420–424.

[2] Karasev V.B., Kramnik V.V., Petrov V.F., Solunin A.A., Khramov V.Yu. High-energy laser on neodymium glass with a radiation close to the diffraction divergence. Nauchno-tekhnicheskiy vestnik ITMO [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2001, no. 4, pp. 17–21 (in Russ.).

[3] Karasev V.B., Kramnik V.V., Nazarov V.V., et al. Features of the generation of a powerful neodymium-glass laser in the frequency-pulse regime. Nauchno-tekhnicheskiy vestnik ITMO [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2003, no. 5, pp. 21–24 (in Russ.).

[4] Bayanov V.I., Bordachev E.G., Volynkin V.M., Kryzhanovskii V.I., Mak A.A., Motorin I.V., Nikonova M.V., Serebryakov V.A., Starikov A.D., Charukhche A.V. Large-aperture neodymium phosphate glass rod amplifiers for high-brightness lasers. Soviet Journal of Quantum Electronics, 1986, vol. 16, no. 9, pp. 1240–1244. DOI: 10.1070/QE1986v016n09ABEH007379

[5] Potemkin A.K., Zhurin K.A., Kirsanov A.V., Kopelovich E.A., Kuznetsov M.V., Kuzmin A.A., Flat F.A., Khazanov E.A., Shaikin A.A. Efficient wide-aperture neodymium glass rod amplifiers. Quantum Electronics, 2011, vol. 41, no. 6, pp. 487–491. DOI: 10.1070/QE2011v041n06ABEH014548

[6] Kuzmin A.A., Khazanov E.A., Shaykin A.A. Repetitively pulsed regime of Nd:glass large-aperture laser amplifiers. Quantum Electronics, 2012, vol. 42, no. 4, pp. 283–291. DOI: 10.1070/QE1986v016n09ABEH007379

[7] Kuzmin A.A., Kulagin O.V., Khazanov E.A., Shaykin A.A. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz. Quantum Electronics, 2013, vol. 43, no. 7, pp. 597–599. DOI: 10.1070/QE2013v043n07ABEH015239

[8] Shaykin A.A., Fokin A.P., Soloviev A.A., Kuzmin A.A., Shaikin I.A., Burdonov K.F., Charukhchev A.V., Khazanov E.A. Laser amplifier based on a neodymium glass rod 150 mm in diameter. Quantum Electronics, 2014, vol. 44, no. 5, pp. 426–430. DOI: 10.1070/QE2014v044n05ABEH015440

[9] Gavrilov V.E. Energy distribution in the emission spectrum of xenon pulsed tube lamps. Optika i spektroskopiya, 1985, vol. 59, no. 2, p. 426 (in Russ.).

[10] Bayanov V.I., Kryzhanovskii V.I., Kuznetsov A.R., Marusova O.Yu., Plyukhin A.G., Yashin V.E. Optimization of pumping of active elements of neodymium glass of different composition by light of pulsed Xenon lamps. Journal of Applied Spectroscopy, 1991, vol. 54, iss. 2, pp. 132–137. DOI: 10.1007/BF00664751

[11] Mezenov A.V., Soms L.N., Stepanov A.I. Termooptika tverdotelnykh lazerov [Thermooptics of solid-state lasers]. Leningrad, Mashinostroenie Publ., 1986. 199 p.

[12] Marshak I.S., ed. Impulsnye istochniki sveta [Pulsed light sources]. Moscow, Energiya Publ., 1978. 450 p.

[13] Podgaetskii V.M., Skvortsov B.V., Tokareva A.N. Influence of the lamp filling on the pumping conditions in a pulsed YAG:Nd3+ laser. Soviet Journal of Quantum Electronics, 1971, vol. 1, no. 3, pp. 293–295. DOI: 10.1070/QE1971v001n03ABEH003084

[14] Zverev G.M., Golyaev Yu.D. Lazery na kristallakh i ikh primenenie [Lasers on crystals and their application]. Moscow, Radio i svyaz Publ., 1994. 311 p.

[15] Bagaev S.N., Osipov V.V., Ivanov M.G., Solomonov V.I., Platonov V.V., Orlov A.N., Rasueva A.V., Ivanov V.V., Kaigorodov A.S., Khrustov V.R., Vatnik S.M., Vedin I.A., Maiorov A.P., Pestryakov E.V., Shestakov A.V., Salkov A.V. Neodymium-doped laser yttrium oxide ceramics. Quantum Electronics, 2008, vol. 38, no. 9, pp. 840–844. DOI: 10.1070/QE2008v038n09ABEH013637

[16] Garanin S.G., Rukavishnikov N.N., Dmitryuk A.V., Zhilin A.A., Mikhaĭlov M.D. Laser ceramic. 1. Production methods. Journal of Optical Technology, 2010, vol. 77, iss. 9, pp. 565–576. DOI: 10.1364/JOT.77.000565

[17] Snetkov I.L., Palashov O.V., Osipov V.V., Mukhina I.B., Maksimov R.N., Shitov V.A., Lukyashin K.E. Investigation of lasing characteristics of domestic Yb:YAG laser ceramics. Quantum Electronics, 2016, vol. 46, no. 7, pp. 586–588. DOI: 10.1070/QEL16115