Application of Single-Gimbal Control Moment Gyros for Attitude Control of a Radio-Range Earth Remote Sensing Spacecraft
Authors: Platonov V.N., Sumarokov A.V., Ryabikov V.S., Makeich S.G., Nekhamkin L.I., Vilenskiy V.V., Zaytsev S.E., Korol L.G., Rusakov R.O. | Published: 17.02.2019 |
Published in issue: #1(124)/2019 | |
DOI: 10.18698/0236-3933-2019-1-50-61 | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments | |
Keywords: Earth remote sensing, single gimbal control moment gyros, space gyrodines, angular momentum, stabilization, angular rate, precession |
The paper presents an outlook into the application of single gimbal control moment gyros as actuators for orientation control of a future radio-range Earth remote sensing (ERS) spacecraft. It describes the precession rate control algorithms for singlegimbal control moment gyros which fulfil the requirements on spacecraft control systems. Mathematical modelling is used in order to show the implementability of the requirements and the assurance of the required stabilization accuracy during the ERS functioning
References
[1] Shikhanov S.V., Ovchin K.D. [Analysis of the state and trend of development of the modern orbital group of remote sensing of the Earth]. III Vseros. nauch.-praktich. konf. Sovremennyye problemy sozdaniya i ekspluatatsii vooruzheniya, voyennoy i spe-tsialnoy tekhniki [III All-Russian Sci.-Pract. Conf. "Modern problems of creation and operation of weapons, military and special equipment"]. St. Petersburg, Mozhaysky Military Space Academy, 2016, pp. 279−283 (in Russ.).
[2] Borisenko N.Yu., Sumarokov A.V. On the rapid orbital attitude control of manned and cargo spacecraft Soyuz MS and Progress MS. J. Comput. Syst. Sci. Int., 2017, vol. 56, iss. 5, pp. 886–895. DOI: 10.1134/S1064230717050033
[3] Sumarokov A.V., Timakov S.N. On an adaptive control system for angular motion of a communication satellite. J. Comput. Syst. Sci. Int., 2008, vol. 47, iss. 5, pp. 795–805. DOI: 10.1134/S1064230708050134
[4] Mkrtychyan A.R., Bashkeev N.I., Akashev D.I., et al. [Developments of AO NII komandnykh priborov for spacecraft motion control systems for Earth remote sensing and other applications]. Tez. dokl. Shestoy mezhdunar. nauch.-tekh. konf. Aktualnye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli [Abs. 6th int. sci.-tech. conf. Actual problems of aircraft remote sensing systems development]. Moscow, AO Korporatsiya VNIIEM Publ., 2018, pp. 43–45 (in Russ.).
[5] Platonov V.N. [Control law of gyro stabilization system]. Tr. V nauch.-tekh. konf. molodykh spetsialistov predpriyatiya [Proc. V. sci.-tech. of young specialist]. Kaliningrad, NPO Energiya Publ., 1977, pp. 57–69 (in Russ.).
[6] Crenshaw J.W. 2-SPEED, a single-gimbal moment gyro attitude control system. AIAA Paper, 1973, no. 73-895. DOI: 10.2514/6.1973-895
[7] Mikrin E.A., ed. Teoreticheskie osnovy proektirovaniya informatsionno-upravlyayushchikh sistem kosmicheskikh apparatov [Theoretical fundamentals of designing management information system for spacecraft]. Moscow, Nauka Publ., 2006.
[8] Platonov V.N., Sumarokov A.V. Studying the possibility of ensuring the stabilization accuracy characteristics of an advanced spacecraft for remote sensing of the Earth. J. Comput. Syst. Sci. Int., 2018, vol. 57, iss. 4, pp. 655−665. DOI: 10.1134/S1064230718040123
[9] Aleksandrov V.V., Boltyanskiy V.G., Lemak S.S., et al. Optimalnoe upravlenie dvizheniem [Optimum motion control]. Moscow, Fizmatlit Publ., 2005.
[10] Bryson A.E., Yu-Chi Ho. Applied optimal control: optimization, estimation, and control. Blaisdell Pub. Co., 1969.
[11] Kwakernaak H., Sivan R. Linear optimal control systems. Wiley Interscience, 1972.
[12] Eykhoff P. System identification parameter and state estimation. Wiley, 1974.
[13] Mikrin E.A., Timakov S.N., Bogdanov K.A., et al. Experience and perspectives of the onboard algorithms creation of the spacecraft motion control. Vestnik RFFI, 2017, no. 3 (95), pp. 23–45 (in Russ.).
[14] Sumarokov A.V. On pointing of high resolution camera mounted on the international space station using biaxial rotating platform. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 4, pp. 85–97 (in Russ.). DOI: 10.18698/0236-3933-2016-4-85-97
[15] Wie B., Bailey D., Heiberg C. Rapid multitarget acquisition and pointing control of agile spacecraft. J. Guid. Control Dyn., 2002, vol. 25, no. 1, pp. 96–104. DOI: 10.2514/2.4854