|

Optoelectronic Double-Wave Method for Remote Control of Vegetable Fiber Moisture

Authors: Kuldashov O.Kh., Kuldashov  G.O., Mamasodikova   Z.Yu. Published: 03.09.2019
Published in issue: #4(127)/2019  
DOI: 10.18698/0236-3933-2019-4-84-96

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instruments and Measuring Methods  
Keywords: optoelectronics, devices, moisture meters, moisture content of vegetable fiber, remote control, absorption, LEDs, photo detectors, IR range

The paper introduces an optoelectronic two-wave method for remote control of raw cotton moisture. To improve the quality of materials obtained from the fiber, it is necessary to proper organize its storage and comply with the optimal modes of processing technology at all stages of production. Proper storage and selection of technological processing depend on the quality indicators of the fiber, namely its moisture. The study shows that currently used methods and devices for the fiber moisture control do not meet the requirements of rapidity and the required measurement accuracy. We found it relevant to develop highly sensitive, accurate and reliable control devices for raw cotton moisture using new high-performance semiconductor radiation sources in the near infrared region. The paper presents a block diagram of an optoelectronic device for remote control of raw cotton moisture. The device uses LED19-PR with a typical maximum emission wavelength of 1.95 µm as radiation sources. The results of remote control of raw cotton moisture are given

References

[1] Ismatullaev P.R., Shertaylakov G.M., Kudratov Zh.Kh., et al. Development of automatic moisture meters for products of agro-industrial complex. Molodoy uchenyy [Young Scientist], 2016, no. 4, pp. 44--46 (in Russ.).

[2] Iskandarov P.I., Kalandarov P.I. An analysis of the effect of interfering factors on the results of measurements of the moisture content of a material at high frequencies, Meas. Tech., 2013, vol. 56, no. 7, pp. 827--830. DOI: 10.1007/s11018-013-0290-2

[3] Masharipov Sh.M. Analysis of modern methods and technical means of measuring moisture content in cotton materials. Pribory, 2016, no. 4, pp. 31--37 (in Russ.).

[4] Lisovskiy V.V. Teoriya i praktika sverkhvysokochastotnogo kontrolya vlazhnosti sel’skokhozyaystvennykh materialov [Theory and practice of super-high frequency control of moisture content in agricultural materials]. Minsk, BGATU Publ., 2005.

[5] Lisovskiy V.V. Teoriya i praktika sverkhvysokochastotnogo kontrolya vlazhnosti sel’skokhozyaystvennykh materialov [Theory and practice of super-high frequency control of moisture content in agricultural materials]. Minsk, BGATU Publ., 2005.

[6] Yakovlev Yu.P., Baranov A.N., Imenkov A.N., et al. Optoelectronic LED-photodiode pairs for moisture and gas sensors in the spectral range 1.8--4.8 μm. Proc. SPIE, 1991, vol. 1510. DOI: 10.1117/12.47135

[7] Baranov A.N., Imenkov A.N., Sherstnev V.V., et al. 2.7--3.9 μm InAsSb(P)/InAsSbP low threshold diode lasers. Appl. Phys. Lett., 1994, vol. 64, no. 19, art. 2480. DOI: 10.1063/1.111603

[8] Yakovlev Yu.P., Baranova A.N., Imenkov A.N., et al. InAsSb/InAsSbP injection lasers for high-resolution spectroscopy. Quantum Electron., 1993, vol. 23, no. 9, pp. 726--729. DOI: 10.1070/QE1993v023n09ABEH003156

[9] Yakovlev Yu.P., Moiseev K.D., Mikhailova M.P., et al. Longwavelength (λ = 3.26 μm) with a single isolated GaInAsSb/p-InAs type II heterojunction in an active layer. Tech. Phys. Lett., 1995, vol. 21, no. 12, pp. 482--484.

[10] Popov A.A., Sherstnev V.V., Baranov A.N., et al. Continuous-wave operation of singlemode GaInAsSb lasers emitting near 2.2 /spl mu/m at Peltier temperatures. Elect. Lett., 1998, vol. 34, no. 14, pp. 198--1399. DOI: 10.1049/el:19980982

[11] Brewer R., Mooradian A. Laser spectroscopy. Springer US, 1974.

[12] Gorodnichev V.A., Belov M.L., Vsyakova Yu.I., et al. Estimation of lidar contrast "oil pollution --- clean water surface" in UV, visible, near and middle IR bands. Radiooptika [Radiooptics], 2016, no. 4, pp. 14--24 (in Russ.). DOI: 10.7463/rdopt.0416.0846191

[13] Ivanova S.Yu., Bershev E.H. Optical method for monitoring structural characteristics of the fabric. Izvestiya vuzov. Tekhnologiya tekstil’noy promyshlennosti, 1990, no. 5, pp. 9--20 (in Russ.).

[14] Brazhnik A.M., Epifanov A.D., Khraplivyy A.P. Mathematical description of scanning fabric in the optical range. Izvestiya vuzov. Tekhnologiya tekstil’noy promyshlennosti, 1985, no. 5, pp. 71--74 (in Russ.).

[15] Mukhitdinov M.M., Kuldashev G.O. Optoelectronic devices for monitoring the temperature of raw cotton bundles. Khimicheskaya tekhnologiya. Kontrol’ i upravlenie, 2010, no. 2, pp. 30--35 (in Russ.).