Numerical Simulation of Heat and Mass Transfer Processes in a Microfluidic Fluid Flow Thermal Sensor
Authors: Ryzhkov V.V., Zverev A.V., Rodionov I.A. | Published: 29.09.2017 |
Published in issue: #5(116)/2017 | |
DOI: 10.18698/0236-3933-2017-5-70-84 | |
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instruments and Measuring Methods | |
Keywords: COMSOL, microfluidics, lab-on-chip, calorimetric flow sensor, numerical simulation, fluid dynamics, CFD |
The paper gives an approach to numerical simulation of heat and mass transfer processes in microfluidic thermal flow sensors (MTFS). By numerical simulation methods in the COMSOL, we investigated heat distribution from a resistive type heater located on the lower surface of a rectangular microchannel. Moreover, we identified the fluid flow rate effect on the zone of maximum divergence (ZMD) of the temperature field. Thus, it made it possible to determine the distance from the heater, at which we observed the greatest temperature difference between the higher and lower RTDs. Furthermore, to increase the sensitivity of the sensor, we suggested an innovative hybrid flow rate measurement scheme. This scheme allowed us to extend the measurement range of conventional MTFS by a factor of three
References
[1] George M. Whitesides. The origins and the future of microfluidics. Nature, 2006, vol. 442, pp. 368–373. DOI: 10.1038/nature05058
[2] Reichmuth D.S., Wang S.K., Barrett L.M., Throckmorton D.J., Einfeldb W., Singha A.K. Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip, 2008, vol. 8, no. 8, pp. 1319–1324. DOI: 10.1039/b801396a
[3] Kawabata T., Wada H.G., Watanabe M., Satomura S. Electrokinetic analyte transport assay for a-fetoprotein immunoassay integrates mixing, reaction and separation on-chip. Electrophoresis, 2008, vol. 29, iss. 7, pp. 1399–1406. DOI: 10.1002/elps.200700898
[4] Dishinger J.F., Reid K.R., Kennedy R.T. Quantitative monitoring of insulin secretion from single islets of langerhans in parallel on a microfluidic chip. Anal. Chem., 2009, vol. 81, no. 8, pp. 3119–3127. DOI: 10.1021/ac900109t
[5] Jokerst J.V., Raamanathan A., Christodoulides N., Floriano P.N., Pollard A.A., Simmonsa H.W., Wong J., Gage C., Furmaga W.B., Redding S.W., McDevitt J.T. Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron., 2009, vol. 24, iss. 12, pp. 3622–3629. DOI: 10.1016/j.bios.2009.05.026
[6] Parsa H., Chin C.D., Mongkolwisetwara P., Lee B.W., Wanga J.J., Sia S.K. Effect of volume and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip, 2008, vol. 8, no. 12, pp. 2062–2070. DOI: 10.1039/B813350F
[7] Shim J., Cristobal G., Link D.R., Thorsen T., Fraden S. Using microfluidics to decouple nucleation and growth of protein crystals. Cryst. Growth Des., 2007, vol. 7, no. 11, pp. 2192–2194. DOI: 10.1021/cg700688f
[8] Zheng B., Tice J.D., Roach L.S., Ismagilov R.F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem., 2004, vol. 43, no. 19, pp. 2508–2511. DOI: 10.1002/anie.200453974
[9] Barbier V., Viovy J.-L. Advanced polymers for DNA separation. Curr. Opin. Biotechnol., 2003, vol. 14, no. 1, pp. 51–57.
[10] Wang X., Yi L., Mukhitov N., Schrell A.M., Dhumpa R., Roper M.G. Microfluidics-to-mass spectrometry: A review of coupling methods and applications. J. Chromatography A, 2015, vol. 1382, pp. 98–116. DOI: 10.1016/j.chroma.2014.10.039
[11] Lomasney A.R., Yi L., Roper M.G. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of langerhans on a microfluidic device. Anal. Chem., 2013, vol. 85, no. 16, pp. 7919–7925. DOI: 10.1021/ac401625g
[12] Ramsey R.S., Ramsey J.M. Generating electrospray from microchip devices using electroosmotic pumping. Anal. Chem., 1997, vol. 69, no. 6, pp. 1174–1178. DOI: 10.1021/ac9610671
[13] Dittrich P.S., Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Publ. Gr., 2006, vol. 5, pp. 210–218. DOI: 10.1038/nrd1985
[14] Pihl J., Karlsson M., Chiu D.T. Microfluidic technologies in drug discovery. Drug Discov. Today. 2005, vol. 10, no. 20, pp. 1377–1383. DOI: 10.1016/S1359-6446(05)03571-3
[15] Werdich A.A., Lima E.A., Ivanov B., Ges I., Wikswo J.P., Baudenbacher F.J. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Miniaturisation Chem. Biol. Bioeng., 2004, vol. 4, no. 4, pp. 357–362. DOI: 10.1039/b315648f
[16] Zhang Huaibin. Bioanalytical applications of microfluidic devices. Diss. University of Illinois, 2010. 147 p.
[17] Rhoads D.S., Guan J.-L. Analysis of directional cell migration on defined FN gradients: Role of intracellular signaling molecules. Exp. Cell Res., 2007, vol. 313, no. 18, pp. 3859–3867. DOI: 10.1016/j.yexcr.2007.06.005
[18] Doyle P.S. Self-assembled magnetic matrices for DNA separation chips. Science, 2002, vol. 295, no. 5563, pp. 2237–2237. DOI: 10.1126/science.1068420
[19] Liu K.-K., Wu R.-G., Chuang Y.-J., Khoo H.S., Huang S.-H., Tseng F.-G. Microfluidic systems for biosensing. Sensors, 2010, vol. 10, no. 7, pp. 6623–6661. DOI: 10.3390/s100706623
[20] Iwanaga S., Smith N., Fujita K., Kawata S., Nakamura O. Single-pulse cell stimulation with a near-infrared picosecond laser. Appl. Phys. Lett., 2005, vol. 87, no. 24, pp. 243901. DOI: 10.1063/1.2147733
[21] Dittrich P.S., Manz A. Single-molecule fluorescence detection in microfluidic channels —the Holy Grail in μTAS? Anal. Bioanal. Chem., 2005, vol. 382, iss. 8, pp. 1771–1782. DOI: 10.1007/s00216-005-3335-9
[22] Mayer F., Salis G., Funk J., Paul O., Baltes H. Scaling of thermal CMOS gas flow microsensors: Experiment and simulation. Proc. of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 116–121. DOI: 10.1109/MEMSYS.1996.493839
[23] Komiya K., Higuchi F., Ohtani K. Characteristics of a thermal gas flowmeter. Rev. Sci. Instrum., 1988, vol. 59, no. 3, pp. 477–479. DOI: 10.1063/1.1139864
[24] Lammerink T.S.J., Tas N.R., Elwenspoek M., Fluitman J.H.J. Micro-liquid flow sensor. Sensors Actuators A: Phys., 1993, vol. 37–38, no. C, pp. 45–50. DOI: 10.1016/0924-4247(93)80010-E
[25] Nguyen N.T., Dötzel W. Asymmetrical locations of heaters and sensors relative to each other using heater arrays: A novel method for designing multi-range electrocaloric mass-flow sensors. Sensors and Actuators A: Phys., 1997, vol. 62, no. 1-3, pp. 506–512. DOI: S0924-4247(97)01529-X
[26] Xu W., Song K., Ma S., Gao B., Chiu Yi, Lee Yi-K. Theoretical and experimental investigations of thermoresistive micro calorimetric flow sensors fabricated by CMOS MEMS technology. J. Microelectromechanical Syst., 2016, vol. 25, no. 5, pp. 954–962. DOI: 10.1109/JMEMS.2016.2596282
[27] Rasmussen A., Mavriplis C., Zaghloul M.E., Mikulchenko O., Mayaram K. Simulation and optimization of a microfluidic flow sensor. Sensors Actuators A: Phys., 2001, vol. 88, no. 2, pp. 121–132. DOI: 10.1016/S0924-4247(00)00503-3
[28] Lien V., Vollmer F. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip, 2007, vol. 7, no. 10, pp. 1352–1356. DOI: 10.1039/B706944H
[29] Lin C.-H., Lee G.-B., Lin Y.-H., Chang G.-L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromechanics Microengineering, 2002, vol. 12, no. 5, pp. 590–597. DOI: 10.1088/0960-1317/12/5/312
[30] McDonald J.C., Whitesides G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res., 2002, vol. 35, no. 7, pp. 491–499. DOI: 10.1021/ar010110q
[31] Wu S., Lin Q., Yuen Y., Tai Yu-Ch. MEMS flow sensors for nano-fluidic applications. Sensors Actuators A: Phys., 2001, vol. 89, no. 1-2, pp. 152–158. DOI: 10.1016/S0924-4247(00)00541-0
[32] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. Gidrodinamika [Theoretical physic. Hydrodynamics]. Moscow, Fizmatlit Publ., 2001. 736 p.